1.不等式-6x2+2<x的解集是(-∞,-$\frac{2}{3}$)∪($\frac{1}{2}$,+∞).

分析 把不等式化為(3x+2)(2x-1)>0,求出對(duì)應(yīng)方程的實(shí)數(shù)解,寫出該不等式的解集即可.

解答 解:不等式-6x2+2<x可化為6x2+x-2>0,
即(3x+2)(2x-1)>0,
且該不等式對(duì)應(yīng)方程的實(shí)數(shù)解是-$\frac{2}{3}$和$\frac{1}{2}$,
所以該不等式的解集是(-∞,-$\frac{2}{3}$)∪($\frac{1}{2}$,+∞).
故答案為:(-∞,-$\frac{2}{3}$)∪($\frac{1}{2}$,+∞).

點(diǎn)評(píng) 本題考查了一元二次不等式的解法與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若a<0,-1<b<0,則下列不等式關(guān)系成立的是( 。
A.ab2<ab<aB.a<ab<ab2C.ab2<a<abD.a<ab2<ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知集合M={x|x2-x-2<0},N={x|a<x<b,x∈R,a,b∈R}.
(1)求集合M;
(2)若M?N,求a的最小值;
(3)若M∩N=M,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知遞增的等比數(shù)列{an}滿足:a2=4,a1+a2+a3=14
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:數(shù)列{an}中任意三項(xiàng)不能構(gòu)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.不等式x(1-3x)>0的解集是( 。
A.(-∞,$\frac{1}{3}$)B.(-∞,0)∪(0,$\frac{1}{3}$)C.($\frac{1}{3}$,+∞)D.(0,$\frac{1}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知x,y的取值如表:
x01234
y11.33.25.68.9
若依據(jù)表中數(shù)據(jù)所畫的散點(diǎn)圖中,所有樣本點(diǎn)(xi,yi)(i=1,2,3,4,5)都在曲線y=$\frac{1}{2}$x2+a附近波動(dòng),則a=( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知不等式ax2-3x+2>0的解集為{x|x<1或x>b}.
(1)求a,b的值;
(2)解關(guān)于x的不等式ax2-(2b-a)x-2b<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知sinα和cosα是方程5x2-x+m=0的兩實(shí)根.求:
(1)m的值;
(2)當(dāng)α∈(0,π)時(shí),求$\frac{1}{tan(3π-α)}$的值;
(3)sin3α+cos3α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ex+6x,g(x)=$\frac{a}{x-3}$+6.
(Ⅰ)若x>3時(shí)f(x)>g(x)恒成立,求a的取值范圍;
(Ⅱ)討論函數(shù)F(x)=f(x)-g(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案