3.已知復(fù)數(shù)z滿足($\sqrt{3}$+3i)z=3i,則z等于$\frac{3}{4}+\frac{{\sqrt{3}}}{4}$i.

分析 利用共軛復(fù)數(shù)的定義、復(fù)數(shù)的運算法則即可得出.

解答 解:∵($\sqrt{3}$+3i)z=3i,∴$(\sqrt{3}-3i)$($\sqrt{3}$+3i)z=3$(\sqrt{3}-3i)$i,
∴12z=$3\sqrt{3}$i+9,
化為:z=$\frac{3}{4}$+$\frac{\sqrt{3}}{4}$i,
故答案為:$\frac{3}{4}$+$\frac{\sqrt{3}}{4}$i.

點評 本題考查了共軛復(fù)數(shù)的定義、復(fù)數(shù)的運算法則,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知α∈(π,$\frac{3π}{2}$),tanα=2,則cosα=( 。
A.$\frac{{\sqrt{5}}}{5}$B.$-\frac{{\sqrt{5}}}{5}$C.$\frac{{2\sqrt{5}}}{5}$D.$-\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}為等差數(shù)列,若$\frac{{a}_{13}}{{a}_{12}}$<-1,且它們的前n項和Sn有最大值,則使得Sn>0的n的最大值為( 。
A.21B.22C.23D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)定義在(0,+∞)上的單調(diào)函數(shù)f(x),對任意的x∈(0,+∞)都有f[f(x)-log2x]=3.若方程f(x)+f′(x)=a有兩個不同的實數(shù)根,則實數(shù)a的取值范圍是( 。
A.(1,+∞)B.(2+$\frac{1}{ln2}$,+∞)C.(3-$\frac{1}{2ln2}$,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某幾何體的三視圖如圖,則該幾何體的表面積為( 。
A.πB.2+$\frac{1+\sqrt{5}}{2}π$C.2+$\frac{2+\sqrt{5}}{2}$πD.2+$\frac{1}{2}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某市要修建一個扇形綠化區(qū)域,其周長定為40米,求它的半徑和圓心角取什么值時,才能使扇形綠化區(qū)域的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(理科答)已知數(shù)列{an}及等差數(shù)列{bn},若a1=3,an=$\frac{1}{2}$an-1+1(n≥2),a1=b2,2a3+a2=b4,
(1)證明數(shù)列{an-2}為等比數(shù)列;
(2)求數(shù)列{an}及數(shù)列{bn}的通項公式;
(3)設(shè)數(shù)列{an•bn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a為實數(shù),若復(fù)數(shù)z=(a2-1)+(a+1)i為純虛數(shù),則$\frac{{a+{i^3}}}{1+i}$的值為(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知某幾何體的三視圖和直觀圖如圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形.

(Ⅰ)求證:B1N⊥CN;
(Ⅱ)設(shè)M為AB中點,在棱BC上是否存在一點P,使MP∥平面B1CN?若存在,求$\frac{BP}{PC}$的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案