17.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知cos(B-C)=1-cosA,且b,a,c成等比數(shù)列.求:
(1)sinB•sinC的值;
(2)A;
(3)tanB+tanC的值.

分析 (1)由三角形內(nèi)角和定理化簡(jiǎn)已知可得:cos(B-C)-cos(B+C)=1,利用三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)可得2sinBsinC=1,即可解得sinB•sinC=$\frac{1}{2}$.
(2)由cos(B-C)≤1,1-cosA≤1,可得cosA≥0,A不是鈍角,利用等比數(shù)列的性質(zhì)可得a2=bc,由正弦定理得:sin2A=sinBsinC=$\frac{1}{2}$,可求sinA=$\frac{\sqrt{2}}{2}$,即可解得A的值.
(3)利用三角函數(shù)恒等變換的應(yīng)用可求cosBcosC=$\frac{1-\sqrt{2}}{2}$,由兩角和的正弦函數(shù)公式化簡(jiǎn)所求后代人即可得解.

解答 解:(1)∵cos(B-C)=1-cosA,可得:cos(B-C)-cos(B+C)=1,
∴解得:cosBcosC+sinBsinC-cosBcosC+sinBsinC=1,
∴2sinBsinC=1,解得:sinB•sinC=$\frac{1}{2}$.
(2)∵cos(B-C)≤1,1-cosA≤1,
∴cosA≥0,A不是鈍角.
∵b,a,c成等比數(shù)列.即:a2=bc,由正弦定理得:sin2A=sinBsinC=$\frac{1}{2}$.
∴由A為三角形內(nèi)角,sinA>0,sinA=$\frac{\sqrt{2}}{2}$,
∴A=$\frac{π}{4}$,
(3)∵cos(B-C)=1-cosA=1-cos$\frac{π}{4}$=1-$\frac{\sqrt{2}}{2}$,
∴cosBcosC+sinBsinC=1-$\frac{\sqrt{2}}{2}$,
∴cosBcosC=1-$\frac{\sqrt{2}}{2}$-sinBsinC=1-$\frac{\sqrt{2}}{2}$-$\frac{1}{2}$=$\frac{1-\sqrt{2}}{2}$,
∴tanB+tanC
=$\frac{sinBcosC+cosBsinC}{cosBcosC}$
=$\frac{sin(B+C)}{cosBcosC}$
=$\frac{sinA}{cosBcosC}$
=$\frac{\frac{\sqrt{2}}{2}}{\frac{1-\sqrt{2}}{2}}$
=-2-$\sqrt{2}$.

點(diǎn)評(píng) 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,考查了三角形內(nèi)角和定理,等比數(shù)列的性質(zhì),正弦定理的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.復(fù)數(shù)z滿足$\frac{z+3i}{z+i}=2$,則z的虛部為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.牛奶保鮮時(shí)間因儲(chǔ)藏溫度的不同而不同,假定保鮮時(shí)間y(小時(shí))與儲(chǔ)藏溫度x(℃)的關(guān)系為指數(shù)型函數(shù)y=kax,若牛奶在10℃的環(huán)境中保鮮時(shí)間約為64小時(shí),在5℃的環(huán)境中保鮮時(shí)間約為80小時(shí),那么在0℃時(shí)保鮮時(shí)間約為100小時(shí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.運(yùn)行如圖的程序,若輸入的數(shù)為1,則輸出的數(shù)是( 。
A.-2B.0C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知R為實(shí)數(shù)集,集合A={x|log2x≥1},B={x|x-a>4}.
(Ⅰ)若a=2,求A∩(∁RB);
(Ⅱ)若A∪B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在平面直角坐標(biāo)系xOy中,點(diǎn)A(1,0),B(4,0).若直線x-y+m=0上存在點(diǎn)P使得PA=$\frac{1}{2}$PB,則實(shí)數(shù)m的取值范圍是$[-2\sqrt{2},2\sqrt{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知點(diǎn)A(cos80°,sin80°),B(cos20°,sin20°),則|$\overrightarrow{AB}$|等于(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在復(fù)平面內(nèi)描出復(fù)數(shù)2+3i,6,-2-i,-3i,分別對(duì)應(yīng)的點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,在四棱錐P-ABCD 中,側(cè)面PAB 為正三角形,側(cè)面PAB⊥底面ABCD,E 為PD 的中點(diǎn),AB⊥AD,BC∥AD,且AB=BC=$\frac{1}{2}$AD=2.
(1)求證CE∥平面PAB;
(2)求四棱錐P-ABCD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案