1.在△ABC中,內(nèi)角A,B,C所對(duì)的邊長分別為a,b,c,且滿足asinBcosC+csinBcosA=$\frac{1}{2}$b,則∠B=( 。
A.$\frac{π}{6}$或$\frac{5π}{6}$B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

分析 由正弦定理化簡已知等式可得sinAsinBcosC+sinCsinBcosA=$\frac{1}{2}$sinB,又sinB≠0,解得sinB=$\frac{1}{2}$,結(jié)合范圍0<B<π,即可求得B的值.

解答 解:∵asinBcosC+csinBcosA=$\frac{1}{2}$b,
∴由正弦定理可得:sinAsinBcosC+sinCsinBcosA=$\frac{1}{2}$sinB,
又∵sinB≠0,
∴sinAcosC+sinCcosA=$\frac{1}{2}$,解得:sin(A+C)=sinB=$\frac{1}{2}$,
∵0<B<π,
∴解得:B=$\frac{π}{6}$或$\frac{5π}{6}$.
故選:A.

點(diǎn)評(píng) 本題主要考查了正弦定理,兩角和的正弦函數(shù)公式的應(yīng)用,考查了正弦函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.過$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的左焦點(diǎn)F1作斜率為$\frac{\sqrt{3}}{3}$直線交橢圓于A,B兩點(diǎn),若|AF1|=7|BF1|,則e=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.從裝有紅球、白球和黑球各2個(gè)的口袋內(nèi)一次取出2個(gè)球,則與事件“兩球都為白球”互斥而非對(duì)立的事件是以下事件“①兩球都不是白球;②兩球恰有一白球;③兩球至少有一個(gè)白球”中的哪幾個(gè)?( 。
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知集合A={x|3x+2>0},$B=\left\{{x\left|{\frac{x+1}{x-3}>0}\right.}\right\}$,則A∩B=(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{bn}滿足b1=1,b2=3,bn=$\frac{{^{2}}_{n-1}+2}{_{n-2}}$(n≥3),求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,在△ABC中,$\overrightarrow{AD}=\frac{2}{3}\overrightarrow{AC}$,$\overrightarrow{BP}=\frac{1}{3}\overrightarrow{BD}$,若$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,則$\frac{λ}{μ}$的值為( 。
A.-3B.3C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)a<$\frac{1}{2}$,判斷并用單調(diào)性定義證明函數(shù)$f(x)=\frac{ax+1}{x+2}$,在(-2,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=lnx+$\frac{a}{ex}$,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求直線x-y=0和橢圓$\frac{{x}^{2}}{20}+\frac{{y}^{2}}{5}=1$的兩個(gè)交點(diǎn)及焦點(diǎn)間距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案