10.已知I是虛數(shù)單位,若(2+i)(m-2i)是實(shí)數(shù),則實(shí)數(shù)m=4.

分析 利用復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)為實(shí)數(shù)的充要條件即可得出.

解答 解:(2+i)(m-2i)=2m+2+(m-4)i是實(shí)數(shù),
則m-4=0,解得m=4.
故答案為:4.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)為實(shí)數(shù)的充要條件,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.二次不等式ax2+bx+c<0的解集是空集的條件是( 。
A.$\left\{\begin{array}{l}{a>0}\\{^{2}-4ac≤0}\end{array}\right.$B.$\left\{\begin{array}{l}{a>0}\\{^{2}-4ac<0}\end{array}\right.$C.$\left\{\begin{array}{l}{a<0}\\{^{2}-4ac≥0}\end{array}\right.$D.$\left\{\begin{array}{l}{a<0}\\{^{2}-4ac<0}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在等差數(shù)列{an}中,公差d≠0,且a1,a4,a10成等比數(shù)列,則$\frac{{a}_{1}}xtjzh9v$的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知角α的終邊在直線(xiàn)y=3x上,則sin2α+sin2α=$\frac{11}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)集合S={1,2,3,4,5},從S的所有非空子集中隨機(jī)選出一個(gè),設(shè)所取出的非空子集的最大元素為ξ,則ξ的數(shù)學(xué)期望為$\frac{129}{31}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知$cos({\frac{5π}{12}+θ})=\frac{3}{5}$,且-π<θ<-$\frac{π}{2}$,則$cos({\frac{π}{12}-θ})$=$-\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.生產(chǎn)某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)x千件,需要另投入成本為C(x),當(dāng)年產(chǎn)量不足80千件時(shí),C(x)=$\frac{1}{360}{x^3}$+20x(萬(wàn)元),當(dāng)年產(chǎn)量不小于80千件時(shí),C(x)=51x+$\frac{10000}{x}$-1450(萬(wàn)元),通過(guò)市場(chǎng)分析,每件商品售價(jià)為0.05萬(wàn)元時(shí),該商品能全部售完.
(1)寫(xiě)出年利潤(rùn)L(x)(萬(wàn)元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式(利潤(rùn)=銷(xiāo)售額-成本);
(2)年產(chǎn)量為多少千件時(shí),生產(chǎn)該商品獲得的利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.?dāng)?shù)列1,$\frac{1}{1+2}$,$\frac{1}{1+2+3}$,…,$\frac{1}{1+2+…+n}$的前n項(xiàng)和為( 。
A.$\frac{2n}{2n+1}$B.$\frac{2n}{n+1}$C.$\frac{n+2}{n+1}$D.$\frac{n}{2n+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在Rt△ABC中,$A=\frac{π}{2}$,AB=4,AC=3,則$\overrightarrow{CA}•\overrightarrow{CB}$=9.

查看答案和解析>>

同步練習(xí)冊(cè)答案