16.設(shè)等差數(shù)列{an}的前n項和為Sn,若a3=-11,a6+a10=-2,則當(dāng)Sn取最小值時,n的值為( 。
A.7B.8C.9D.10

分析 利用等差數(shù)列的通項公式可得an,令an≥0,解出即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵a3=-11,a6+a10=-2,
∴$\left\{\begin{array}{l}{{a}_{1}+2d=-11}\\{2{a}_{1}+14d=-2}\end{array}\right.$,
解得a1=-15,d=2,
∴an=-15+2(n-1)=2n-17,
令an≥0,解得n≥$\frac{17}{2}$,
則當(dāng)Sn取最小值時,n=8.
故選:B.

點評 本題考查了等差數(shù)列的通項公式及其單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C的方程;$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),F(xiàn)(1,0)是它的一個焦點.
(1)當(dāng)a=$\sqrt{2}$時,圓O;x2+y2=1的切線與橢圓C交于P,Q兩點,且滿足$\frac{2}{3}≤\overrightarrow{OP}•\overrightarrow{OQ}≤\frac{3}{4}$,求△POQ面積的最小值;
(2)設(shè)過橢圓C的右焦點F的直線L交橢圓于A,B兩點,若直線l繞點F任意轉(zhuǎn)動,都有|$\overrightarrow{OA}$|2+|$\overrightarrow{OB}$|2<|$\overrightarrow{AB}$|2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知f(x)=x3+f′($\frac{2}{3}$)x2-x,則f(x)的圖象在點($\frac{2}{3}$,f($\frac{2}{3}$))處的切線斜率是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(m,2m-3),若$\overrightarrow{a}$∥$\overrightarrow$,則m的值為(  )
A.-$\frac{9}{7}$B.$\frac{9}{7}$C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=(log2x-2)(log4x-$\frac{1}{2}$).
(1)當(dāng)x∈[1,4]時,求該函數(shù)的值域;
(2)若f(x)≤mlog2x對于x∈[4,16]恒成立,求m得取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)函數(shù)f(x)在x=1處可導(dǎo),則$\underset{lim}{△x→0}$$\frac{f(1+△x)-f(1)}{2△x}$等于$\frac{1}{2}$f′(1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知cos($\frac{π}{2}+α$)=2sin($α-\frac{π}{2}$),求$\frac{sin(3π+α)+cos(α+π)}{5cos(\frac{5π}{2}-α)+3sin(\frac{7π}{2}-α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=loga$\frac{x-2}{x+2}(a>0$且a≠1).
(1)求f(x)的定義域;
(2)判定f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知$\frac{sinB}{sinA+sinC}$=$\frac{a+b-c}{a+b}$.
(1)求角A的大;
(2)若B=$\frac{π}{2}$,AB=4$\sqrt{3}$,點D是斜邊AC上的一個動點,連接BD,以BD為折痕,將△BDA翻折,使點A落在平面BCD內(nèi)點A1處,連接A1C,如圖,求A1C的最小值.

查看答案和解析>>

同步練習(xí)冊答案