2.若C18m=C183m-6,則m=3或6.

分析 根據(jù)組合數(shù)的公式與性質(zhì),列出方程求出解即可.

解答 解:C18m=C183m-6,
∴m=3m-6或m+(3m-6)=18,
解得m=3或m=6.
故答案為:3或6.

點評 本題考查了組合數(shù)公式與性質(zhì)的應用問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=2.
(1)若$\overrightarrow{a}$、$\overrightarrow$的夾角為45°,求|$\overrightarrow{a}$+$\overrightarrow$|
(2)若($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,求$\overrightarrow{a}$與$\overrightarrow$的夾角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知數(shù)列{an}滿足a1=1,a${\;}_{n+1}^{2}$-${a}_{n}^{2}$=2(n∈N*).
(1)若數(shù)列{an}中的每一項均為正數(shù),求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=$\frac{{a}_{n}^{2}}{{2}^{n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知cos2a=$\frac{1}{3}$(cosa+sina),則cosa-sina=±$\sqrt{2}$或$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在(x-y)n展開式中,偶數(shù)項的系數(shù)之和為-256.
求(1)n;
(2)系數(shù)的最大和最小項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.化簡:
(1)$\frac{tan\frac{5π}{4}+tan\frac{5π}{12}}{1-tan\frac{5π}{12}}$;
(2)$\frac{sin(α+β)-2sinαcosβ}{2sinαsinβ+cos(α+β)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤$\frac{π}{3}$)兩條相鄰的對稱軸之間的距離為$\frac{π}{2}$,若其圖象向右平移$\frac{π}{3}$個單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)(  )
A.關(guān)于點($\frac{π}{12}$,0)對稱B.關(guān)于點($\frac{5π}{12}$,0)對稱
C.關(guān)于直線x=$\frac{5π}{12}$對稱D.關(guān)于直線x=$\frac{π}{12}$對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.圓柱形玻璃杯高8cm,杯口周長為12cm,內(nèi)壁距杯口2cm的點A處有一點蜜糖.A點正對面的外壁(不是A點的外壁)距杯底2cm的點B處有一小蟲.若小蟲沿杯壁爬向蜜糖飽食一頓,最少要爬多少10cm.(不計杯壁厚度與小蟲的尺寸)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.如圖,某流動海洋觀測船開始位于燈塔B的北偏東θ(0<θ<$\frac{π}{2}$)方向,且滿足2sin2($\frac{π}{4}$+θ)-$\sqrt{3}$cos2θ=1,AB=AD,在接到上級命令后,該觀測船從A點位置沿AD方向在D點補充物資后沿BD方向在C點投浮標,使得C點于A點的距離為4$\sqrt{3}$km,則該觀測船行駛的最遠航程為8km.

查看答案和解析>>

同步練習冊答案