【題目】在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)是原點(diǎn),以軸為對(duì)稱軸,且經(jīng)過點(diǎn).

(Ⅰ)求拋物線的方程;

(Ⅱ)設(shè)點(diǎn), 在拋物線上,直線, 分別與軸交于點(diǎn), , .求直線的斜率.

【答案】(1)(2)

【解析】試題分析:(Ⅰ)利用待定系數(shù)法,將點(diǎn)代入即可得到拋物線的方程;(Ⅱ)由,得直線的傾斜角互補(bǔ),所以 ,設(shè)出直線的方程與拋物線聯(lián)立可得點(diǎn)坐標(biāo),將換為可得點(diǎn)坐標(biāo),由兩點(diǎn)間斜率計(jì)算公式可得結(jié)果.

試題解析:(Ⅰ)

依題意,設(shè)拋物線的方程為.由拋物線且經(jīng)過點(diǎn),得,

所以拋物線的方程為

(Ⅱ)因?yàn)?/span>,所以

所以 ,所以 直線的傾斜角互補(bǔ),所以

依題意,直線的斜率存在,設(shè)直線的方程為: ,

將其代入拋物線的方程,整理得

設(shè),則 , ,

所以.以替換點(diǎn)坐標(biāo)中的,得

所以 .所以直線的斜率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙“十一”結(jié)束之后,某網(wǎng)站針對(duì)購(gòu)物情況進(jìn)行了調(diào)查,參與調(diào)查的人主要集中在[20,50]歲之間,若規(guī)定:購(gòu)物600(含600元)以下者,稱為“理智購(gòu)物”,購(gòu)物超過600元者被網(wǎng)友形象的稱為“剁手黨”,得到如下統(tǒng)計(jì)表:

分組編號(hào)

年齡分組

球迷

所占比例

1

[20,25)

1000

0.5

2

[25,30)

1800

0.6

3

[30,35)

1200

0.5

4

[35,40)

a

0.4

5

[40,45)

300

0.2

6

[45,50]

200

0.1

若參與調(diào)查的“理智購(gòu)物”總?cè)藬?shù)為7720人.
(1)求a的值;
(2)從年齡在[20,35)的“剁手黨”中按照年齡區(qū)間分層抽樣的方法抽取20人; ①?gòu)倪@20人中隨機(jī)抽取2人,求這2人恰好屬于同一年齡區(qū)間的概率;
②從這20人中隨機(jī)抽取2人,用ζ表示年齡在[20,25)之間的人數(shù),求ξ的分布列及期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn, S3=a4+6,且a1, a4, a13成等比數(shù)列.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè),求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣x
(1)求f(x)的解析式;
(2)畫出f(x)的圖象;
(3)若方程f(x)=k有4個(gè)解,求k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合.如果對(duì)于的每一個(gè)含有個(gè)元素的子集, 中必有4個(gè)元素的和等于,稱正整數(shù)為集合的一個(gè)“相關(guān)數(shù)”.

(Ⅰ)當(dāng)時(shí),判斷5和6是否為集合的“相關(guān)數(shù)”,說明理由;

(Ⅱ)若為集合的“相關(guān)數(shù)”,證明: ;

(Ⅲ)給定正整數(shù).求集合的“相關(guān)數(shù)” 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)棱垂直于底面, , , 是棱的中點(diǎn).

證明:平面⊥平面;

(Ⅱ)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)教育部頒布的《關(guān)于推進(jìn)中小學(xué)生研學(xué)旅行的意見》,某校計(jì)劃開設(shè)八門研學(xué)旅行課程,并對(duì)全校學(xué)生的選擇意向進(jìn)行調(diào)查(調(diào)查要求全員參與,每個(gè)學(xué)生必須從八門課程中選出唯一一門課程).本次調(diào)查結(jié)果整理成條形圖如下.

上圖中,已知課程為人文類課程,課程為自然科學(xué)類課程.為進(jìn)一步研究學(xué)生選課意向,結(jié)合上面圖表,采取分層抽樣方法從全校抽取的學(xué)生作為研究樣本組(以下簡(jiǎn)稱“組M”).

(Ⅰ)在“組M”中,選擇人文類課程和自然科學(xué)類課程的人數(shù)各有多少?

(Ⅱ)為參加某地舉辦的自然科學(xué)營(yíng)活動(dòng),從“組M”所有選擇自然科學(xué)類課程的同學(xué)中隨機(jī)抽取4名同學(xué)前往,其中選擇課程F或課程H的同學(xué)參加本次活動(dòng),費(fèi)用為每人1500元,選擇課程G的同學(xué)參加,費(fèi)用為每人2000元.

(ⅰ)設(shè)隨機(jī)變量表示選出的4名同學(xué)中選擇課程的人數(shù),求隨機(jī)變量的分布列;

(ⅱ)設(shè)隨機(jī)變量表示選出的4名同學(xué)參加科學(xué)營(yíng)的費(fèi)用總和,求隨機(jī)變量的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (x≠0).
(1)證明函數(shù)f(x)為奇函數(shù);
(2)判斷函數(shù)f(x)在[1,+∞)上的單調(diào)性,并說明理由;
(3)若x∈[﹣2,﹣3],求函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在等腰梯形中, .把沿折起,使得,得到四棱錐.如圖2所示.

(1)求證:面

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案