【題目】雙“十一”結束之后,某網站針對購物情況進行了調查,參與調查的人主要集中在[20,50]歲之間,若規(guī)定:購物600(含600元)以下者,稱為“理智購物”,購物超過600元者被網友形象的稱為“剁手黨”,得到如下統(tǒng)計表:
分組編號 | 年齡分組 | 球迷 | 所占比例 |
1 | [20,25) | 1000 | 0.5 |
2 | [25,30) | 1800 | 0.6 |
3 | [30,35) | 1200 | 0.5 |
4 | [35,40) | a | 0.4 |
5 | [40,45) | 300 | 0.2 |
6 | [45,50] | 200 | 0.1 |
若參與調查的“理智購物”總人數為7720人.
(1)求a的值;
(2)從年齡在[20,35)的“剁手黨”中按照年齡區(qū)間分層抽樣的方法抽取20人; ①從這20人中隨機抽取2人,求這2人恰好屬于同一年齡區(qū)間的概率;
②從這20人中隨機抽取2人,用ζ表示年齡在[20,25)之間的人數,求ξ的分布列及期望值.
【答案】
(1)解:由“理智購物”者總人數為7720人,
可得:1000+1800× +1200+a× +300× +200× =7720,
解得a=880
(2)解:①年齡在[20,35)的“剁手黨”共有1000+1800+1200=4000人,
則年齡在區(qū)間[20,25)的應該抽取5人,年齡在區(qū)間[25,30)的應該抽取9人,年齡在區(qū)間[30,35)的應該抽取6人.
從這20人中隨機抽取2人,這2人屬于同一年齡區(qū)間的概率為:
P= = .
②由題意可知ξ的取值可能為0,1,2.
P(ξ=0)= = ,
P(ξ=1)= = ,
P(ξ=2)= = ,
故ξ的分布列為:
ξ | 0 | 1 | 2 |
P |
E(ξ)= =
【解析】(1)由“理智購物”者總人數為7720人,結合題意列出方程,由此能求出a的值.(2)①年齡在[20,35)的“剁手黨”有4000人,則年齡在區(qū)間[20,25)的應該抽取5人,年齡在區(qū)間[25,30)的應該抽取9人,年齡在區(qū)間[30,35)的應該抽取6人,由此能求出從這20人中隨機抽取2人,這2人屬于同一年齡區(qū)間的概率.②由題意可知ξ的取值可能為0,1,2.分別求出相應的概率,由此能求出ξ的分布列和E(ξ).
【考點精析】通過靈活運用離散型隨機變量及其分布列,掌握在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列即可以解答此題.
科目:高中數學 來源: 題型:
【題目】某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此做了四次試驗,得到的數據如下:
(1)在給定的坐標系中畫出表中數據的散點圖;
(2)求出y關于x的線性回歸方程,并在坐標系中畫出回歸直線;
(3)試預測加工10個零件需要多少小時?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn,n∈N*.已知a1=1,a2=,a3=,且當n≥2時,4Sn+2+5Sn=8Sn+1+Sn-1.
(1)求a4的值;
(2)證明: 為等比數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數, , 為實數, , 為自然對數的底數, .
(1)當, 時,設函數的最小值為,求的最大值;
(2)若關于的方程在區(qū)間上有兩個不同實數解,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,甲船以每小時30海里的速度向正北方向航行,乙船按固定方向勻速直線航行.當甲船位于A1處時,乙船位于甲船的南偏西75°方向的B1處,此時兩船相距20海里.當甲船航行20分鐘到達A2處時,乙船航行到甲船的南偏西60°方向的B2處,此時兩船相距10海里.問:乙船每小時航行多少海里?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某房地產開發(fā)公司計劃在一樓區(qū)內建造一個長方形公園,公園由長方形的休閑區(qū)(陰影部分)和環(huán)公園人行道組成.已知休閑區(qū)的面積為4000平方米,人行道的寬分別為4米和10米.
(1)若設休閑區(qū)的長米,求公園所占面積關于的函數的解析式;
(2)要使公園所占面積最小,休閑區(qū)的長和寬該如何設計?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在△ABC中,已知|AB|=4 ,且三內角A,B,C滿足2sin A+sin C=2sin B,建立適當的坐標系,求頂點C的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線的頂點是原點,以軸為對稱軸,且經過點.
(Ⅰ)求拋物線的方程;
(Ⅱ)設點, 在拋物線上,直線, 分別與軸交于點, , .求直線的斜率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com