邊長為1的等邊三角形ABC中,設
AB
=
c
,
BC
=
a
,
CA
=
b
,則
a
b
+
b
c
+
c•
a
=( 。
A、-
1
2
B、
1
2
C、
3
2
D、-
3
2
分析:由題設知
a
b
,
b
c
,
c
a
的夾角都是120°,|
a
|=|
b
|=|
c
|=1
,由向量的數(shù)量積公式能夠求解
a
b
+
b
c
+
c•
a
解答:解:∵邊長為1的等邊三角形ABC中,
AB
=
c
,
BC
=
a
,
CA
=
b
,
a
b
+
b
c
+
c•
a

=1×1×cos120°+1×1×cos120°+1×1×cos120°
=-
3
2

故選D.
點評:本題考查向量的數(shù)量積公式的運用,解題時要注意
a
b
,
b
c
,
c
a
的夾角都是120°,|
a
|=|
b
|=|
c
|=1
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)附加題:已知半橢圓
x2
a2
+
y2
b2
=1(x≥0)
與半橢圓
y2
b2
+
x2
c2
=1(x≤0)
組成的曲線稱為“果圓”,其中a2=b2+c2,a>b>c>0,F(xiàn)0、F1、F2是對應的焦點.
(1)(文)若三角形F0F1F2是邊長為1的等邊三角形,求“果圓”的方程.
(2)(理)當|A1A2|>|B1B2|時,求
b
a
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

P、Q是邊長為1的等邊三角形△ABC邊BC上的兩個三等分點,則|2
AP
-
AQ
|=
1
1

查看答案和解析>>

科目:高中數(shù)學 來源:2010年廣東省高一第二學期期末測試數(shù)學試題 題型:解答題

(本小題10分)“雪花曲線”因其形狀類似雪花而得名,它可以以下列方式產(chǎn)生,如圖,有一列曲線,已知是邊長為1的等邊三角形,是對進行如下操作得到:將的每條邊三等分,以每邊中間部分的線段為邊,向外作等邊三角形,再將中間部分的線段去掉().

(1)記曲線的邊長和邊數(shù)分別為),求的表達式;

(2)記為曲線所圍成圖形的面積,寫出的遞推關系式,并求.

 

查看答案和解析>>

科目:高中數(shù)學 來源:廣東省深圳高級中學2009-2010學年高一下期末 題型:解答題

 “雪花曲線”因其形狀類似雪花而得名,它可以以下列方式產(chǎn)生,如圖,有一列曲線,已知是邊長為1的等邊三角形,是對進行如下操作得到:將的每條邊三等分,以每邊中間部分的線段為邊,向外作等邊三角形,再將中間部分的線段去掉().

 

 

 

 

 

 

   (1)記曲線的邊長和邊數(shù)分別為),求的表達式;

   (2)記為曲線所圍成圖形的面積,寫出的遞推關系式,并求

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年廣東省深圳高級中學高一第二學期期末測試數(shù)學試題 題型:解答題

(本小題10分)“雪花曲線”因其形狀類似雪花而得名,它可以以下列方式產(chǎn)生,如圖,有一列曲線,已知是邊長為1的等邊三角形,是對進行如下操作得到:將的每條邊三等分,以每邊中間部分的線段為邊,向外作等邊三角形,再將中間部分的線段去掉().

(1)記曲線的邊長和邊數(shù)分別為),求的表達式;
(2)記為曲線所圍成圖形的面積,寫出的遞推關系式,并求.

查看答案和解析>>

同步練習冊答案