【題目】已知函數(shù),.
(1)討論的單調(diào)性;
(2)若有兩個極值點(diǎn),求的最大值.
【答案】(1)分類討論,詳見解析;(2).
【解析】
(1)求出導(dǎo)函數(shù),根據(jù)二次函數(shù)的與的關(guān)系來分類討論函數(shù)的單調(diào)性,并注意一元二次方程根的正負(fù)與定義域的關(guān)系;
(2)由是兩個極值點(diǎn)得到對應(yīng)的韋達(dá)定理形式,然后利用條件將轉(zhuǎn)變?yōu)殛P(guān)于某一變量的新函數(shù),分析新函數(shù)的單調(diào)性從而確定出新函數(shù)的最大值即的最大值.
(1),,,
當(dāng),即時,,此時在上單調(diào)遞增;
當(dāng)時,有兩個負(fù)根,此時在上單調(diào)遞增;
當(dāng)時,有兩個正根,分別為,,
此時在,上單調(diào)遞增,在上單調(diào)遞減.
綜上可得:時,在上單調(diào)遞增,
時,在,上單調(diào)遞增,在上單調(diào)遞減.
(2)由(1)可得,,
,,
∵,,∴,,
∴
令,則
當(dāng)時,;當(dāng)時,
∴在上單調(diào)遞增,在單調(diào)遞減
∴
∴的最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)①;②;③;④;其中對于定義域內(nèi)任意一個自變量都存在唯一自變量,使得成立的函數(shù)是()
A.①③B.②③C.①②④D.③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在上,且不恒為零的函數(shù)滿足:對于任意實(shí)數(shù)和,總有恒成立,則稱為“類余弦型”函數(shù).
(1)已知為“類余弦型”函數(shù),且,求和的值;
(2)證明:函數(shù)為偶函數(shù);
(3)若為“類余弦型”函數(shù),且對于任意非零實(shí)數(shù),總有,設(shè)有理數(shù)、滿足,判斷和大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的一個側(cè)面為等邊三角形,且平面平面,四邊形是平行四邊形,,,.
(1)求證:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】身體素質(zhì)拓展訓(xùn)練中,人從豎直墻壁的頂點(diǎn)A沿光滑桿自由下滑到傾斜的木板上(人可看作質(zhì)點(diǎn)),若木板的傾斜角不同,人沿著三條不同路徑AB、AC、AD滑到木板上的時間分別為t1、t2、t3,若已知AB、AC、AD與板的夾角分別為70o、90o和105o,則( )
A. t1>t2>t3 B. t1<t2<t3 C. t1=t2=t3 D. 不能確定t1、t2、t3之間的關(guān)系
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù),且曲線在處的切線與直線垂直.
(I)求函數(shù)在區(qū)間上的極大值;
(II)求證:當(dāng)時,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四種說法中,錯誤的個數(shù)是( )
①命題“,”的否定是“,”;
②命題“為真”是命題“為真”的必要不充分條件;
③“若,則”的逆命題為真;
④若實(shí)數(shù),,則滿足的概率為.
A.個B.個C.個D.個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中:
①若樣本數(shù)據(jù)的方差為16,則數(shù)據(jù)的方差為64;
②“平面向量夾角為銳角,則”的逆命題為真命題;
③命題“,”的否定是“,”;
④若:,,則是的充分不必要條件.
真命題的個數(shù)序號_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為實(shí)數(shù))的圖像在點(diǎn)處的切線方程為.
(1)求實(shí)數(shù)的值及函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù),證明時, .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com