【題目】已知函數(shù)為實(shí)數(shù))的圖像在點(diǎn)處的切線方程為.
(1)求實(shí)數(shù)的值及函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù),證明時(shí), .
【答案】(1) ;函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)詳見解析.
【解析】試題分析:(1)由題得,根據(jù)曲線在點(diǎn)處的切線方程,列出方程組,求得的值,得到的解析式,即可求解函數(shù)的單調(diào)區(qū)間;
(2)由(1)得 根據(jù)由,整理得,
設(shè),轉(zhuǎn)化為函數(shù)的最值,即可作出證明.
試題解析:
(1)由題得,函數(shù)的定義域?yàn)?/span>, ,
因?yàn)榍在點(diǎn)處的切線方程為,
所以解得.
令,得,
當(dāng)時(shí), , 在區(qū)間內(nèi)單調(diào)遞減;
當(dāng)時(shí), , 在區(qū)間內(nèi)單調(diào)遞增.
所以函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.
(2)由(1)得, .
由,得,即.
要證,需證,即證,
設(shè),則要證,等價(jià)于證: .
令,則,
∴在區(qū)間內(nèi)單調(diào)遞增, ,
即,故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:方程 =1表示雙曲線,命題q:x∈(0,+∞),x2﹣mx+4≥0恒成立,若p∨q是真命題,且綈(p∧q)也是真命題,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過設(shè)計(jì)下面的實(shí)驗(yàn)來估計(jì)的值:先請(qǐng)200名同學(xué),每人隨機(jī)寫下一個(gè)都小于1的正實(shí)數(shù)對(duì)(x,y);再統(tǒng)計(jì)兩數(shù)能與1構(gòu)成鈍角三角形三邊的數(shù)對(duì)(x,y)的個(gè)數(shù)m;最后再根據(jù)統(tǒng)計(jì)數(shù)m來估計(jì)的值.假如統(tǒng)計(jì)結(jié)果是m=56,那么可以估計(jì)__________.(用分?jǐn)?shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求在上的最大值和最小值;
(2)設(shè)曲線與軸正半軸的交點(diǎn)為處的切線方程為,求證:對(duì)于任意的正實(shí)數(shù),都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓過點(diǎn),離心率為, , 是橢圓的長軸的兩個(gè)端點(diǎn)(位于右側(cè)),是橢圓在軸正半軸上的頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在經(jīng)過點(diǎn)且斜率為的直線與橢圓交于不同兩點(diǎn)和,使得向量與共線?如果存在,求出直線方程;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級(jí)舉行一次知識(shí)競賽活動(dòng),活動(dòng)分為初賽和決賽兩個(gè)階段,F(xiàn)將初賽答卷成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段) | 頻數(shù)(人數(shù)) | 頻率 |
[60,70) | ① | 0.16 |
[70,80) | 22 | ② |
[80,90) | 14 | 0.28 |
[90,100] | ③ | ④ |
合 計(jì) | 50 | 1 |
(1)填充頻率分布表中的空格(在解答中直接寫出對(duì)應(yīng)空格序號(hào)的答案);
(2)決賽規(guī)則如下:參加決賽的每位同學(xué)依次口答4道小題,答對(duì)2道題就終止答題,并獲得一等獎(jiǎng)。如果前三道題都答錯(cuò),就不再答第四題。某同學(xué)進(jìn)入決賽,每道題答對(duì)的概率的值恰好與頻率分布表中不少于80分的頻率的值相同.
①求該同學(xué)恰好答滿4道題而獲得一等獎(jiǎng)的概率;
②記該同學(xué)決賽中答題個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b∈R,ab≠0,給出下面四個(gè)命題:①a2+b2≥﹣2ab;② ≥2;③若a<b,則ac2<bc2;④若 .則a>b;其中真命題有( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是雙曲線 (a>0,b>0,xy≠0)上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線的焦點(diǎn),M是∠F1PF2的平分線上一點(diǎn),且.某同學(xué)用以下方法研究|OM|:延長F2M交PF1于點(diǎn)N,可知△PNF2為等腰三角形,且M為F2N的中點(diǎn),得|OM|=|NF1|=…=a。類似地:P是橢圓 (a>b>0,xy≠0)上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的焦點(diǎn),M是∠F1PF2的平分線上一點(diǎn),且,則|OM|的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓C:過點(diǎn)(0,4),離心率為
(1)求C的方程;
(2)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的長度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com