14.函數(shù)f(x)=$\left\{\begin{array}{l}{{ax}^{2}+x-1(x>2)}\\{-x+1(x≤2)}\end{array}\right.$是R上的單調(diào)遞減函數(shù),則實數(shù)a的取值范圍是(-∞,-$\frac{1}{2}$].

分析 利用函數(shù)的單調(diào)性的性質(zhì),可得$\left\{\begin{array}{l}{a<0}\\{-\frac{1}{2a}≤2}\\{-2+1≥4a+2-1}\end{array}\right.$,由此求得a的范圍.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{{ax}^{2}+x-1(x>2)}\\{-x+1(x≤2)}\end{array}\right.$是R上的單調(diào)遞減函數(shù),
∴$\left\{\begin{array}{l}{a<0}\\{-\frac{1}{2a}≤2}\\{-2+1≥4a+2-1}\end{array}\right.$,求得a≤-$\frac{1}{2}$,
故答案為:(-∞,-$\frac{1}{2}$].

點評 本題主要考查函數(shù)的單調(diào)性的性質(zhì),屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知離心率為$\frac{{\sqrt{2}}}{2}$的橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$過點$({1,-\frac{{\sqrt{2}}}{2}})$,點F1,F(xiàn)2分別為橢圓的左、右焦點,過F1的直線l與C交于A,B兩點,且${S_{△AB{F_2}}}=\frac{{4\sqrt{3}}}{5}$.
(1)求橢圓C的方程;
(2)求證:以AB為直徑的圓過坐標原點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.某校組織10名學生參加高校的自主招生活動,其中6名男生,4名女生,根據(jù)實際要從10名同學中選3名參加A校的自主招生,則其中恰有1名女生的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖所示是一個組合幾何體的三視圖,則該幾何體的體積為( 。
A.$\frac{16}{3}$πB.$\frac{64}{3}$C.$\frac{16π+64}{3}$D.16π+64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知數(shù)列{an}滿足遞推關(guān)系:an+1=$\frac{{a}_{n}}{{a}_{n}+1}$,a1=$\frac{1}{2}$,則a2017=( 。
A.$\frac{1}{2016}$B.$\frac{1}{2017}$C.$\frac{1}{2018}$D.$\frac{1}{2019}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=sinx(x≥-3π),將f(x)的零點從小到大排列,得到一個數(shù)列{an}(n∈N*
(1)直接寫出{an}的通項公式;
(2)求{|an|}的前n項和Sn
(3)設(shè)bn=$\frac{{a}_{n}}{π}$+4,證明:$\frac{1}{_{1}}$+$\frac{1}{{_{1}b}_{2}}$+$\frac{1}{{{_{1}b}_{2}b}_{3}}$+$\frac{1}{{{{_{1}b}_{2}b}_{3}b}_{4}}$+…+$\frac{1}{{{_{1}b}_{2}b}_{3}••{•b}_{2017}}$<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在△ABC中,a,b,c分別為角A,B,C所對的邊,若(a+c+b)(b+a-c)=3ab,則C=(  )
A.150°B.60°C.120°D.30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.計算2sin275°-1的值等于( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.計算:sin72°cos18°+cos72°sin18°=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.-1

查看答案和解析>>

同步練習冊答案