分析 利用函數(shù)的單調(diào)性的性質(zhì),可得$\left\{\begin{array}{l}{a<0}\\{-\frac{1}{2a}≤2}\\{-2+1≥4a+2-1}\end{array}\right.$,由此求得a的范圍.
解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{{ax}^{2}+x-1(x>2)}\\{-x+1(x≤2)}\end{array}\right.$是R上的單調(diào)遞減函數(shù),
∴$\left\{\begin{array}{l}{a<0}\\{-\frac{1}{2a}≤2}\\{-2+1≥4a+2-1}\end{array}\right.$,求得a≤-$\frac{1}{2}$,
故答案為:(-∞,-$\frac{1}{2}$].
點評 本題主要考查函數(shù)的單調(diào)性的性質(zhì),屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{16}{3}$π | B. | $\frac{64}{3}$ | C. | $\frac{16π+64}{3}$ | D. | 16π+64 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2016}$ | B. | $\frac{1}{2017}$ | C. | $\frac{1}{2018}$ | D. | $\frac{1}{2019}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 150° | B. | 60° | C. | 120° | D. | 30° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | 1 | D. | -1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com