19.求下面函數(shù)的定義域和值域:
y=3[1-($\frac{1}{2}$)x].

分析 根據(jù)指數(shù)函數(shù)的定義域和單調(diào)性的性質(zhì)進(jìn)行求解即可.

解答 解:要使函數(shù)有意義,則x∈(-∞,+∞),
即函數(shù)的定義域?yàn)椋?∞,+∞),
∵($\frac{1}{2}$)x>0,
∴-($\frac{1}{2}$)x<0,
∴1-($\frac{1}{2}$)x<1,
y=3[1-($\frac{1}{2}$)x]<3,
即函數(shù)的值域?yàn)椋?∞,3].

點(diǎn)評(píng) 本題主要考查函數(shù)定義域和值域的求解,根據(jù)指數(shù)函數(shù)的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知四邊形ABCD是菱形,點(diǎn)P在對(duì)角線AC上(不包括端點(diǎn)A、C),則$\overrightarrow{AP}$=(  )
A.λ($\overrightarrow{AB}$+$\overrightarrow{BC}$) λ∈(0,1)B.λ($\overrightarrow{AB}$+$\overrightarrow{BC}$) λ∈(0,$\frac{\sqrt{2}}{2}$)C.λ($\overrightarrow{AB}$-$\overrightarrow{BC}$) λ∈(0,1)D.λ($\overrightarrow{AB}$-$\overrightarrow{BC}$) λ∈(0,$\frac{\sqrt{2}}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)集合A={a,b,c,d},B={e,f,g,h},求以A為定義域,B為值域的不同的函數(shù)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)P是不等式組$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+3y≤1}\end{array}\right.$表示的平面區(qū)域內(nèi)的任意一點(diǎn),向量$\overrightarrow{m}$=(-1,1),$\overrightarrow{n}$=(2,-1),若$\overrightarrow{OP}=λ\overrightarrow m+μ\overrightarrow n$,則$\frac{μ}{λ+1}$的取值范圍(  )
A.[-$\frac{1}{2}$,2]B.[0,1]C.[$\frac{1}{2}$,1]D.[0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知向量$\overrightarrow{m}$=($\sqrt{3}$sin$\frac{x}{4}$,1),$\overrightarrow{n}$=(cos$\frac{x}{4}$,cos2$\frac{x}{4}$),若$\overrightarrow{m}$•$\overrightarrow{n}$=1,求cos($\frac{2π}{3}$-x)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知A(m,-m+3),B(2,m-1),C(-1,4),直線AC的斜率等于直線BC的斜率的3倍,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.寫出一個(gè)滿足f($\frac{1}{x}$)=-f(x)的偶函數(shù)的函數(shù)解析式f(x)=0,x≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.定義移動(dòng)運(yùn)算“⊕”,對(duì)于任意正整數(shù)n滿足以下運(yùn)算:(1)1⊕1=1;(2)(n+1)⊕1=2+n⊕1,則n⊕1用含n的代數(shù)式可表示為( 。
A.2n-1B.nC.2n-1D.2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知曲線C1:ρ=4cosθ.
(1)在極坐標(biāo)系中,與曲線C1相切的一條直線方程為B
A.ρcosθ=2   B.ρsinθ=2   C.ρ=4sin(θ+$\frac{π}{3}$)   D.ρ=4sin(θ-$\frac{π}{3}$)
(2)已知曲線C1的極坐標(biāo)方程為:ρcosθ=3,則曲線C1與C2交點(diǎn)的極坐標(biāo)為(2$\sqrt{3}$,$\frac{π}{6}$)或(2$\sqrt{3}$,-$\frac{π}{6}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案