14.已知向量$\overrightarrow{m}$=($\sqrt{3}$sin$\frac{x}{4}$,1),$\overrightarrow{n}$=(cos$\frac{x}{4}$,cos2$\frac{x}{4}$),若$\overrightarrow{m}$•$\overrightarrow{n}$=1,求cos($\frac{2π}{3}$-x)的值.

分析 由題意和數(shù)量積的運(yùn)算可得sin($\frac{x}{2}$+$\frac{π}{6}$)=$\frac{1}{2}$,再由誘導(dǎo)公式和二倍角公式整體可得cos($\frac{2π}{3}$-x)=1-2cos2($\frac{x}{2}$+$\frac{π}{6}$),代值計(jì)算可得.

解答 解:∵$\overrightarrow{m}$=($\sqrt{3}$sin$\frac{x}{4}$,1),$\overrightarrow{n}$=(cos$\frac{x}{4}$,cos2$\frac{x}{4}$),
∴$\overrightarrow{m}$•$\overrightarrow{n}$=$\sqrt{3}$sin$\frac{x}{4}$cos$\frac{x}{4}$+cos2$\frac{x}{4}$=$\frac{\sqrt{3}}{2}$sin$\frac{x}{2}$+$\frac{1}{2}$cos$\frac{x}{2}$+$\frac{1}{2}$=1,
∴sin($\frac{x}{2}$+$\frac{π}{6}$)=$\frac{1}{2}$,
∴cos($\frac{2π}{3}$-x)=cos[π-(x+$\frac{π}{3}$)]=-cos(x+$\frac{π}{3}$)
=1-2cos2($\frac{x}{2}$+$\frac{π}{6}$)=1-2×$\frac{1}{4}$=$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查兩角和與差的三角函數(shù)公式,涉及向量的運(yùn)算和整體思想,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在△ABC中,若cosA=$\frac{4}{5}$,cosB=$\frac{5}{13}$,則cosC的值是( 。
A.$\frac{16}{65}$B.$\frac{56}{65}$C.$\frac{16}{65}$或$\frac{56}{65}$D.-$\frac{16}{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)g(x)=lnx+$\frac{1}{x}$.
(1)求g(x)的單調(diào)區(qū)間和最小值;
(2)若f(x)=g(x)-g($\frac{1}{x}$),證明f(x)在(0,+∞)上有且僅有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若α為△ABC的內(nèi)角,且$\sqrt{3}sinα+cosα=1$.則α=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=log2(3x2-mx+2)在區(qū)間[1,+∞)上單調(diào)遞增,則實(shí)數(shù)m的取值范圍是(-∞,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.求下面函數(shù)的定義域和值域:
y=3[1-($\frac{1}{2}$)x].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)全集為U,且A∪B=U,則下列關(guān)系一定成立的是(  )
A.B⊆∁UAB.A∩B=∅C.A⊆∁UBD.UA∩∁UB=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)y=log(2x-1)(-4x+8)的定義域?yàn)椋?\frac{1}{2}$,1)∪(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖所示,在正方體ABCD-A1B1C1D1中,E是棱DD1的中點(diǎn).
(1)若正方體的棱長(zhǎng)為1,求三棱錐B1-A1BE的體積;
(2)在棱C1D1上是否存在一點(diǎn)F,使B1F∥面A1BE?若存在,試確定點(diǎn)F的位置,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案