若函數(shù)f(x)=-x2+ax+5在區(qū)間(2,+∞)上為減函數(shù),則a的取值范圍為
 
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:由條件利用二次函數(shù)的性質(zhì)可得
a
2
≤2,由此求得a的范圍.
解答: 解:由于函數(shù)f(x)=-x2+ax+5的對(duì)稱(chēng)軸方程為x=
a
2
,函數(shù)在區(qū)間(2,+∞)上為減函數(shù),
a
2
≤2,求得a≤4,
故答案為:(-∞,4].
點(diǎn)評(píng):本題主要考查二次函數(shù)的性質(zhì)的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x2+8x的圖象上一點(diǎn)P(1,f(1)),過(guò)P作平行于x軸的直線l1,直線l2:x=2,求如圖所示的陰影部分的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:“?x∈R*,x>
1
x
”,命題p的否定為命題q,則q是“
 
”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a、b、c、d均為正數(shù),且a2+b2=4,cd=1,則(a2c2+b2d2)(b2c2+a2d2)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算由直線y=x-4,曲線y2=2x所圍成圖形的面積S=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(2x+1)=x2+
1
x
,則f(3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果圓柱的底面直徑為4,母線長(zhǎng)為2,那么圓柱的側(cè)面展開(kāi)圖的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若Sk=
1
k+1
+
1
k+2
+…+
1
2k-1
+
1
2k
,則Sk+1-Sk=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題:“若a、b、c是三連續(xù)的整數(shù),那么a、b、c中至少有一個(gè)是偶數(shù)”時(shí),下列假設(shè)正確的是(  )
A、假設(shè)a、b、c中至多有一個(gè)偶數(shù)
B、假設(shè)a、b、c中至多有兩個(gè)偶數(shù)
C、假設(shè)a、b、c都是偶數(shù)
D、假設(shè)a、b、c都不是偶數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案