分析 由等差數(shù)列的前n項和求出原數(shù)列的通項公式,再由裂項相消法得答案.
解答 解:∵$\frac{2}{1+2+…+n}=\frac{2}{\frac{n(n+1)}{2}}=4(\frac{1}{n}-\frac{1}{n+1})$,
∴2,$\frac{2}{1+2}$,$\frac{2}{1+2+3}$,…,$\frac{2}{1+2+…+n}$的前n項和為:
Sn=2+$\frac{2}{1+2}$+$\frac{2}{1+2+3}$+…+$\frac{2}{1+2+…+n}$
=$4(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1})$=$4(1-\frac{1}{n+1})=\frac{4n}{n+1}$.
點評 本題考查了等差數(shù)列的前n項和,考查了裂項相消法求數(shù)列的前n項和,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{25}$ | B. | $\frac{1}{10}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com