【題目】為了反映各行業(yè)對(duì)倉(cāng)儲(chǔ)物流業(yè)務(wù)需求變化的情況,以及重要商品庫(kù)存變化的動(dòng)向,中國(guó)物流與采購(gòu)聯(lián)合會(huì)和中儲(chǔ)發(fā)展股份有限公司通過聯(lián)合調(diào)查,制定了中國(guó)倉(cāng)儲(chǔ)指數(shù).由2016年1月至2017年7月的調(diào)查數(shù)據(jù)得出的中國(guó)倉(cāng)儲(chǔ)指數(shù),繪制出如下的折線圖.

根據(jù)該折線圖,下列結(jié)論正確的是( )

A. 2016年各月的合儲(chǔ)指數(shù)最大值是在3月份

B. 2017年1月至7月的倉(cāng)儲(chǔ)指數(shù)的中位數(shù)為55

C. 2017年1月與4月的倉(cāng)儲(chǔ)指數(shù)的平均數(shù)為52

D. 2016年1月至4月的合儲(chǔ)指數(shù)相對(duì)于2017年1月至4月,波動(dòng)性更大

【答案】D

【解析】 2016年各月的倉(cāng)儲(chǔ)指數(shù)最大值是在11月份,所以A是錯(cuò)誤的;

由圖可知,20171月至7月的倉(cāng)儲(chǔ)指數(shù)的中位數(shù)約為,所以B是錯(cuò)誤的;

20174月的倉(cāng)儲(chǔ)指數(shù)的平均數(shù)為,所以C是錯(cuò)誤的;

由圖可知,20161月至4月的倉(cāng)儲(chǔ)指數(shù)比20171月至4月的倉(cāng)儲(chǔ)指數(shù)波動(dòng)更大,

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】5張獎(jiǎng)券中有2張是中獎(jiǎng)的,先由甲抽1張,然后由乙抽1張,求:

1)甲中獎(jiǎng)的概率

2)甲乙都中獎(jiǎng)的概率;

3)只有乙中獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中, 平面, , , , .

(I)求異面直線所成角的余弦值;

(II)求證: 平面;

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某產(chǎn)品的廣告支出(單位:萬(wàn)元)與銷售收入(單位:萬(wàn)元)之間有下表所對(duì)應(yīng)的數(shù)據(jù):

(1)畫出表中數(shù)據(jù)的散點(diǎn)圖;

(2)求出對(duì)的線性回歸方程;

(3)若廣告費(fèi)為9萬(wàn)元,則銷售收入約為多少萬(wàn)元?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱臺(tái)的底面是正三角形,平面平面,.

(Ⅰ)求證:;

(Ⅱ)若和梯形的面積都等于,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“雙十一網(wǎng)購(gòu)狂歡節(jié)”源于淘寶商城(天貓)2009年11月11 日舉辦的促銷活動(dòng),當(dāng)時(shí)參與的商家數(shù)量和促銷力度均有限,但營(yíng)業(yè)額遠(yuǎn)超預(yù)想的效果,于是11月11日成為天貓舉辦大規(guī)模促銷活動(dòng)的固定日期.如今,中國(guó)的“雙十一”已經(jīng)從一個(gè)節(jié)日變成了全民狂歡的“電商購(gòu)物日”.某淘寶電商分析近8年“雙十一”期間的宣傳費(fèi)用(單位:萬(wàn)元)和利潤(rùn)(單位:十萬(wàn)元)之間的關(guān)系,得到下列數(shù)據(jù):

2

3

4

5

6

8

9

11

1

2

3

3

4

5

6

8

(1)請(qǐng)用相關(guān)系數(shù)說明之間是否存在線性相關(guān)關(guān)系(當(dāng)時(shí),說明之間具有線性相關(guān)關(guān)系);

(2)根據(jù)(1)的判斷結(jié)果,建立之間的回歸方程,并預(yù)測(cè)當(dāng)時(shí),對(duì)應(yīng)的利潤(rùn)為多少(精確到0.1).

附參考公式:回歸方程中最小二乘估計(jì)分別為

,相關(guān)系數(shù)

參考數(shù)據(jù):

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直三棱柱中,分別是,的中點(diǎn),,為棱上的點(diǎn).

證明:;

證明:;

是否存在一點(diǎn),使得平面與平面所成銳二面角的余弦值為?若存在,說明點(diǎn)的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐中,已知平面平面,底面為梯形, ,且, , , 在棱上且滿足.

(1)求證: 平面;

(2)求證: 平面;

(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)求的值;

(2)設(shè)m,n∈N*,n≥m,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案