已知(x+1)2+(y+1)2≤4,則2x-y的最大值為
 
考點:圓的標準方程
專題:綜合題,直線與圓
分析:(x+1)2+(y+1)2≤4表示以(-1,-1)為圓心,2為半徑的圓面(包括邊界),令z=2x-y,則2x-y的最大時,y=2x-z的縱截距最小,由圓心到直線的距離,可得結(jié)論.
解答: 解:(x+1)2+(y+1)2≤4表示以(-1,-1)為圓心,2為半徑的圓面(包括邊界),
令z=2x-y,即y=2x-z,∴2x-y的最大時,y=2x-z的縱截距最小,
由圓心到直線的距離,可得
|-2+1-z|
5
=2,
∴z=-1±2
5

∴2x-y的最大值為-1-2
5

故答案為:-1-2
5
點評:本題考查直線與圓的位置關(guān)系,考查學生分析解決問題的能力,考查點到直線的距離公式,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知點A(1,1)而且F1是橢圓
x2
9
+
y2
5
=1的左焦點,P是橢圓上任意一點,求|PF1|+|PA|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,a1=1,an+1=xan,其中Sn是數(shù)列an的前n項和.
(1)求數(shù)列{an}的通項公式,用帶x式子表示;
(2)數(shù)列{bn}中,bn=
an
Sn
,求{bn}通項公式,并探究bn與bn+1的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log2(2x+1)+kx(k為常數(shù))是偶函數(shù).
(1)求k的值;
(2)設(shè)g(x)=log2((
2
x+2+a)+log2
2
2
x,當f(x)=g(x)時,求實數(shù)x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+x-a(-1≤x≤1),且|a|≤1,則|f(x)|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=2x-
a
2x
的圖象向右平移2個單位后得曲線C1,將函數(shù)y=g(x)的圖象向下平移2個單位后得曲線C2,C1與C2關(guān)于x軸對稱.若F(x)=
f(x)
a
+g(x)
的最小值為m且m>2+
7
,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于任意θ∈R,|sinθ-2|+|sinθ-3|≥a+
2
a
恒成立,則實數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某田徑隊有男運動員30人,女運動員10人.用分層抽樣的方法從中抽出一個容量為20的樣本,則抽出的女運動員有
 
人.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-ax+a2-19=0},B={2,3},C={-4,2}.
(1)若∅為A∩B的真子集,A∩C=∅,求a的值;
(2)若A為B的子集,求a的取值范圍.

查看答案和解析>>

同步練習冊答案