【題目】在中,角,,的對邊分別為,,,,且,則面積的最大值為( )
A. B. C. D.
【答案】B
【解析】
利用余弦定理分別表示出cosB和cosA,代入到已知的等式中,化簡后即可求出c的值,然后利用余弦定理表示出c2=a2+b2﹣2abcosC,把c及cosC的值代入后,利用基本不等式即可求出ab的最大值,然后由cosC的值,及C的范圍,利用同角三角函數(shù)間的基本關(guān)系求出sinC的值,利用三角形的面積公式表示出三角形ABC的面積,把ab的最大值及sinC的值代入即可求出面積的最大值.
∵acosB+bcosA=2,
∴
∴c=2,
∴4=a2+b2﹣2ab×≥2ab﹣2ab×=ab,
∴ab≤(當(dāng)且僅當(dāng)a=b=時等號成立)
由cosC=,得sinC=,
∴S△ABC=absinC≤××=,
故△ABC的面積最大值為.
故答案為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點O,焦點在x軸上,離心率為 ,橢圓C上的點到右焦點的最大距離為3.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)斜率存在的直線l與橢圓C交于A,B兩點,并且滿足|2 + |=|2 ﹣ |,求直線在y軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如今,中國的“雙十一”已經(jīng)從一個節(jié)日變成了全民狂歡的“電商購物日”.某淘寶電商分析近8年“雙十一”期間的宣傳費用 (單位:萬元)和利潤 (單位:十萬元)之間的關(guān)系,得到下列數(shù)據(jù):
2 | 3 | 4 | 5 | 6 | 8 | 9 | 11 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
請回答:
(Ⅰ)請用相關(guān)系數(shù)說明與之間是否存在線性相關(guān)關(guān)系(當(dāng)時,說明與之間具有線性相關(guān)關(guān)系);
(Ⅱ)根據(jù)1的判斷結(jié)果,建立與之間的回歸方程,并預(yù)測當(dāng)時,對應(yīng)的利潤為多少(精確到).
附參考公式:回歸方程中中和最小二乘估計分別為,,
相關(guān)系數(shù).
參考數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確命題的個數(shù)是( )
①對于命題p:x∈R,使得x2+x﹣1<0,則¬p:x∈R,均有x2+x﹣1>0;
②p是q的必要不充分條件,則¬p是¬q的充分不必要條件;
③命題“若x=y,則sinx=siny”的逆否命題為真命題;
④“m=﹣1”是“直線l1:mx+(2m﹣1)y+1=0與直線l2:3x+my+3=0垂直”的充要條件.
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且a,b,c成等比數(shù)列,若sinB= ,cosB= ,則a+c的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程是ρ=2cosθ,以極點為平面直角坐標(biāo)系的原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線L的參數(shù)方程是 (t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程和直線L的普通方程;
(2)設(shè)點P(m,0),若直線L與曲線C交于A,B兩點,且|PA||PB|=1,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的函數(shù).
求函數(shù)的單調(diào)減區(qū)間;
Ⅱ若關(guān)于的方程有兩個不同的解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是無窮數(shù)列,滿足lgan+1=|lgan﹣lgan﹣1|(n=2,3,4,…).
(1)若a1=2,a2=3,求a3 , a4 , a5的值;
(2)求證:“數(shù)列{an}中存在ak(k∈N*)使得lgak=0”是“數(shù)列{an}中有無數(shù)多項是1”的充要條件;
(3)求證:在數(shù)列{an}中ak(k∈N*),使得1≤ak<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(﹣,0)和B(,0),動點C到A、B兩點的距離之差的絕對值為2.
(1)求點C的軌跡方程;
(2)點C的軌跡與經(jīng)過點(2,0)且斜率為1的直線交于D、E兩點,求線段DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com