5.函數(shù)f(x)=$\frac{1}{3}$x3-4x+4在區(qū)間[0,3]上的最小值為(  )
A.4B.1C.-$\frac{4}{3}$D.-$\frac{8}{3}$

分析 f′(x)=x2-4=(x+2)(x-2).利用導(dǎo)數(shù)研究其單調(diào)性極值與最值即可得出.

解答 解:f′(x)=x2-4=(x+2)(x-2).
∴x∈[0,2)時(shí),f′(x)<0,函數(shù)f(x)在[0,2)上單調(diào)遞減;
x∈[2,3]時(shí),f′(x)>0,函數(shù)f(x)在[2,3]上單調(diào)遞增.
∴x=2時(shí),函數(shù)f(x)取得極小值即最小值,f(2)=-$\frac{4}{3}$.
故選:C.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若點(diǎn)O和點(diǎn)F分別為橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的中心和左焦點(diǎn),點(diǎn)P為橢圓上任意一點(diǎn),則$\overrightarrow{OP}$•$\overrightarrow{FP}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{an}的前n項(xiàng)和為Sn,若an=-3Sn+4,bn=-log2an+1
(1)求數(shù)列{an}的通項(xiàng)公式與數(shù)列{bn}的通項(xiàng)公式;
(2)令cn=$\frac{_{n}}{{2}^{n+1}}$,其中n∈N*,記數(shù)列{cn}的前n項(xiàng)和為T(mén)n,求Tn+$\frac{n+2}{{2}^{n}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{1}{2}$ax2+2x-lnx.
(1)當(dāng)a=0時(shí),求函數(shù)的極值;
(2)若f(x)在[$\frac{1}{3}$,2]上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)集合M={x|-1≤x≤2},N={x|log2x>0},則M∪N=( 。
A.[-1,+∞)B.(1,+∞)C.(-1,2)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=lnx-$\frac{a}{x}$,g(x)=f(x)+ax-6lnx,其中a∈R.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若g(x)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)函數(shù) f(x)=x3+ax2-a2x+5(a>0).
(1)當(dāng)函數(shù)f(x)有兩個(gè)零點(diǎn)時(shí),求a的值;
(2)若a∈[3,6],當(dāng)x∈[-4,4]時(shí),求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=axm+bx(a、b、m∈R,a≠0)的圖象關(guān)于y軸對(duì)稱,在點(diǎn)x=1處的切線方程為y=2x-1,數(shù)列{an}各項(xiàng)均為正值,且a1=m,a2=2m,且$\frac{{a}_{n}}{{a}_{n-1}}$=f($\frac{{a}_{{n}_{+1}}}{{a}_{n}}$)(n>1),則a6=( 。
A.$\frac{1}{{2}^{10}}$B.$\frac{1}{{2}^{15}}$C.2${\;}^{\frac{31}{16}}$D.2${\;}^{\frac{47}{16}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)函數(shù) f(x) 在 R上可導(dǎo),其導(dǎo)函數(shù)為 f′(x),且函數(shù) y=(1-x)f′(x) 的圖象如圖所示,則下列結(jié)論中一定成立的是(  )
A.函數(shù) f(x) 有極大值f(2)和極小值f(1)B.函數(shù)f(x) 有極大值 f(2)和極小值 f(-2)
C.函數(shù) f(x)有極大值f(-2)和極小值 f(1)D.函數(shù)f(x)  有極大值f(-2)和極小值 f(2)

查看答案和解析>>

同步練習(xí)冊(cè)答案