20.設集合M={x|-1≤x≤2},N={x|log2x>0},則M∪N=( 。
A.[-1,+∞)B.(1,+∞)C.(-1,2)D.(0,2)

分析 解對數(shù)不等式求出N={x|x>1},再利用兩個集合的并集的定義求出M∪N.

解答 解:設集合M={x|-1≤x≤2}=[-1,2],N={x|log2x>0}=(1,+∞),則M∪N=[-1,+∞),
故選:A

點評 本題主要考查對數(shù)不等式的解法,兩個集合的并集的定義和求法,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

10.在△ABC中,角A,B,C所對的邊分別為a,b,c,若3a=2b,則$\frac{2si{n}^{2}B-si{n}^{2}A}{si{n}^{2}A}$的值為$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在三棱錐A-BCD中,AD=BD,∠ABC=90°,點E,F(xiàn)分別在棱AB,AC上,點G為棱AD的中點,平面EFG∥平面BCD.證明:
(Ⅰ)EF=$\frac{1}{2}$BC;
(Ⅱ)平面EFD⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.橢圓x2+2y2=4的離心率是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知兩定點A(-2,0)和B(2,0),動點P(x,y)在直線l:y=x+3上移動,橢圓C以A,B為焦點且經(jīng)過點P,則橢圓C的離心率的最大值為( 。
A.$\frac{2}{\sqrt{26}}$B.$\frac{4}{\sqrt{26}}$C.$\frac{2}{\sqrt{13}}$D.$\frac{3}{\sqrt{13}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)f(x)=$\frac{1}{3}$x3-4x+4在區(qū)間[0,3]上的最小值為( 。
A.4B.1C.-$\frac{4}{3}$D.-$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知角α的頂點是坐標原點,始邊是x軸正半軸,終邊過點(-2,1),則sin2α=( 。
A.$-\frac{4}{5}$B.$\frac{4}{5}$C.$-\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知sinα+sinβ=$\frac{1}{4}$,cosα+cosβ=$\frac{1}{3}$,則sin(α+β)=$\frac{24}{25}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(3,m),$\overrightarrow{a}$∥($\overrightarrow{a}$+$\overrightarrow$),則實數(shù)m=-6.

查看答案和解析>>

同步練習冊答案