【題目】在三棱錐P﹣ABC中,AP=AB,平面PAB⊥平面ABC,ABC=90°,D,E分別為PB,BC的中點.

(1)求證:DE∥平面PAC;

(2)求證:DEAD.

【答案】(1)見解析;(2)見解析.

【解析】

(1)利用中位線證得,根據(jù)線面平行的判定定理,可證得平面.(2)利用面面垂直的性質(zhì)定理,證得平面,得到,根據(jù)等腰三角形的性質(zhì)得到,由此證得平面,進而證得.

證明:(1)因為D,E分別為PB,BC的中點,

所以DE∥PC,

又DE平面PAC,PC平面PAC,

故DE∥平面PAC.

(2)因為AP=AB,PD=DB,所以AD⊥PB,

因為平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,

又BC⊥AB,BC平面ABC,所以BC⊥平面PAB,

因為AD平面PAB,所以AD⊥BC,

又PB∩BC=B,PB,BC平面ABC,故AD⊥平面PBC,

因為DE平面PBC,所以DE⊥AD.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)x,y,z均為正實數(shù),且xyz=1,求證: + + ≥xy+yz+zx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,修建一條公路需要一段環(huán)湖彎曲路段與兩條直道平滑連接(相切).已知環(huán)湖彎曲路段為某三次函數(shù)圖像的一部分,則該函數(shù)的解析式為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓兩焦點分別為是橢圓在第一象限弧上一點,并滿足,過P作傾斜角互補的兩條直線分別交橢圓于兩點.

(1)求點坐標;

(2)求證:直線的斜率為定值;

(3)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,四邊形ABCD中,AB∥CD,AD⊥AB,AB=2CD=4,AD=2,過點C作CO⊥AB,垂足為O,將△OBC沿CO折起,如圖2使得平面CBO與平面AOCD所成的二面角的大小為θ(0<θ<π),E,F(xiàn)分別為BC,AO的中點
(1)求證:EF∥平面ABD
(2)若θ= ,求二面角F﹣BD﹣O的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={y|y= },B={x|y=lg(x﹣2x2)},則R(A∩B)=(
A.[0,
B.(﹣∞,0)∪[ ,+∞)
C.(0,
D.(﹣∞,0]∪[ ,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線C的頂點在原點O,過點,其焦點Fx軸上.

求拋物線C的標準方程;

斜率為1且與點F的距離為的直線x軸交于點M,且點M的橫坐標大于1,求點M的坐標;

是否存在過點M的直線l,使lC交于P、Q兩點,且若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx.
(Ⅰ)設(shè)函數(shù)g(x)= ,求g(x)的單調(diào)區(qū)間;
(Ⅱ)若方程f(x)=t有兩個不相等的實數(shù)根x1 , x2 , 求證:x1+x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x+a(ex﹣1+e﹣x+1)有唯一零點,則a=( )
A.﹣
B.
C.
D.1

查看答案和解析>>

同步練習冊答案