【題目】已知函數(shù)

1)判斷函數(shù)的奇偶性,并加以證明;

2)用定義證明上是減函數(shù);

3)函數(shù)上是單調增函數(shù)還是單調減函數(shù)?(直接寫出答案,不要求寫證明過程).

【答案】)函數(shù)為奇函數(shù);()略;(在(﹣1,0)上是減函數(shù).

【解析】

試題()首先求函數(shù)定義域并驗證其定義域是否關于原點對稱,再根據(jù)奇函數(shù)的定義驗證即證;()根據(jù)減函數(shù)的定義,證明當時,總有即證;()由()可知函數(shù)為奇函數(shù),其圖像關于原點對稱,得在(﹣1,0)上是減函數(shù)。

試題解析:()函數(shù)為奇函數(shù),理由如下:

易知函數(shù)的定義域為:,關于坐標原點對稱.

在定義域上是奇函數(shù).

)設,則

∵0x1x21,∴x1x21x1x2﹣10,

∵x2x1∴x2﹣x10

,即

因此函數(shù)在(0,1)上是減函數(shù).

在(﹣1,0)上是減函數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的最小值是1,且.

(1)求函數(shù)的解析式;

(2)若,試求的最小值;

(3)若在區(qū)間上,的圖像恒在的圖像上方,試確定實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學的高二(1)班男同學有45名,女同學有15名,老師按照分層抽樣的方法組建了一個4人的課外興趣小組.

(1)求課外興趣小組中男、女同學的人數(shù);

(2)經(jīng)過一個月的學習、討論,這個興趣小組決定選出兩名同學做某項實驗,方法是先從小組里選出1名同學做實驗,該同學做完后,再從小組內(nèi)剩下的同學中選一名同學做實驗,求選出的兩名同學中恰有一名女同學的概率;

(3)試驗結束后,第一次做試驗的同學得到的試驗數(shù)據(jù)為68,70,71,72,74,第二次做試驗的同學得到的試驗數(shù)據(jù)為69,70,70,72,74 ,請問哪位同學的實驗更穩(wěn)定?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為為參數(shù)),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的方程為.

(1)求圓的直角坐標方程;

(2)設圓與直線交于點,若點的坐標為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≥ 對任意實數(shù)a≠0恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電腦公司有5名產(chǎn)品推銷員,其工作年限與年推銷金額的數(shù)據(jù)如表:

推銷員編號

1

2

3

4

5

工作年限

3

5

6

7

9

推銷金額萬元

2

3

3

4

5

求年推銷金額y關于工作年限x的線性回歸方程;

判斷變量xy之間是正相關還是負相關;

若第6名推銷員的工作年限是11年,試估計他的年推銷金額.

(參考數(shù)據(jù),

參考公式:線性回歸方程,,其中為樣本平均數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).

(I)求m的值;

(II)求函數(shù)g(x)=h(x)+,x的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求C;
(2)若c= ,△ABC的面積為 ,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市交通部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進行問卷調查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照,,分成5組,制成如圖所示頻率分直方圖.

(1)求圖中x的值;

(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);

(3)已知滿意度評分值在內(nèi)的男生數(shù)與女生數(shù)的比為,若在滿意度評分值為的人中隨機抽取2人進行座談,求2人均為男生的概率.

查看答案和解析>>

同步練習冊答案