【題目】某醫(yī)院用光電比色計檢查尿汞時,得尿汞含量(毫克/)與消光系數(shù)如下表:

尿汞含量

2

4

6

8

10

消光系數(shù)

64

138

205

285

360

1)作散點圖;

2)如果之間具有線性相關(guān)關(guān)系,求回歸線直線方程;

3)估計尿汞含量為9毫克/升時消光系數(shù).

,

參考數(shù)據(jù):,

【答案】1)見解析(23321

【解析】

1)根據(jù)所給數(shù)據(jù),可以畫出散點圖;
2)利用線性回歸方程系數(shù)公式,求出相關(guān)的系數(shù),即可求得回歸直線方程;

3)將代入回歸直線方程,即可估計尿汞含量為9毫克/升時的消光系數(shù).

1)見下圖.

2)由散點圖可知線性相關(guān).

設(shè)回歸直線方程

∴回歸方程為

3)當時,

即估計原汞含量為9毫克/升時消光系數(shù)約為321.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)當時,求曲線在點處的切線方程;

)求函數(shù)的單調(diào)區(qū)間;

)若對任意的,都有成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓的離心率為,橢圓上一點到左右兩個焦點、的距離之和是4.

1)求橢圓的方程;

2)已知過的直線與橢圓交于、兩點,且兩點與左右頂點不重合,若,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校藝術(shù)節(jié)對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預(yù)測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(理科)某中學為研究學生的身體素質(zhì)與課外體育鍛煉時間的關(guān)系,對該校200名高三學生的課外體育鍛煉平均每天運動的時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)

將學生日均課外體育運動時間在上的學生評價為“課外體育達標”.

(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為 “課外體育達標”與性別有關(guān)?

(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該校高三學生中,抽取3名學生,記被抽取的3名學生中的“課外體育達標”學生人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的數(shù)學期望.

獨立性檢驗界值表:

(參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)求與橢圓有共同焦點且過點的雙曲線的標準方程;

(2)已知拋物線的焦點在軸上,拋物線上的點到焦點的距離等于5,求拋物線的標準方程和的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形ACDE所在的平面與平面ABC垂直,MCEAD的交點,,且

1)求證:平面;

2)求三棱錐的體積.

3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】100件產(chǎn)品中,有98件合格品,2件不合格品,從這100件產(chǎn)品中任意抽出3件,則( )

A.抽出的3件中恰好有1件是不合格品的抽法有

B.抽出的3件中恰好有1件是不合格品的抽法有

C.抽出的3件中至少有1件是不合格品的抽法有

D.抽出的3件中至少有1件是不合格品的抽法有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個袋中有2個紅球,4個白球.

1)從中取出3個球,求取到紅球個數(shù)的概率分布及數(shù)學期望;

2)每次取1個球,取出后記錄顏色并放回袋中.

①若取到第二次紅球就停止試驗,求第5次取球后試驗停止的概率;

②取球4次,求取到紅球個數(shù)的概率分布及數(shù)學期望.

查看答案和解析>>

同步練習冊答案