分析 (Ⅰ)由△PAD中PA=PD,O為AD中點(diǎn),可得PO⊥AD,又側(cè)面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO?平面PAD,即可證明PO⊥平面ABCD.
(Ⅱ)利用勾股定理可求PO的值,由體積公式即可得解.
解答 解:(Ⅰ)證明:在△PAD中PA=PD,O為AD中點(diǎn),所以PO⊥AD.
又側(cè)面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO?平面PAD,
所以PO⊥平面ABCD.
(Ⅱ)∵PA=PD=$\sqrt{2}$,AO=1,∴PO=$\sqrt{A{P}^{2}-A{O}^{2}}$=$\sqrt{2-1}$=1,
∴V=$\frac{1}{3}×$PO×S四邊形ABCD=$\frac{1}{3}×1×(\frac{1+2}{2}×1)=\frac{1}{2}$.
點(diǎn)評(píng) 本題主要考查了直線與平面垂直的判定,平面與平面垂直的性質(zhì),考查了空間想象能力和推理論證能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com