14.已知直線l1:ax+y-1=0,l2:(a-2)x+ay-3=0;命題p:a=1;命題q:l1⊥l2;則命題p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

分析 由直線的垂直關(guān)系可得a的值,由集合的包含關(guān)系可得.

解答 解:命題q,由l1⊥l2可得a(a-2)+a=0,解得a=0或a=1,
由{1}是{0,1}的真子集可得p是q的充分不必要條件
故選:A

點(diǎn)評(píng) 本題考查充要條件的判定,涉及直線的垂直關(guān)系,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.用反證法證明“如果a<b,那么$\root{3}{a}<\root{3}$”時(shí),假設(shè)的內(nèi)容應(yīng)是( 。
A.a>bB.$\root{3}{a}>\root{3}$C.$\root{3}{a}=\root{3}$且$\root{3}{a}>\root{3}$D.$\root{3}{a}=\root{3}$或$\root{3}{a}>\root{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.計(jì)算:若${\frac{1}{2}^{2a+1}}<{\frac{1}{2}^{3-2a}}$,則實(shí)數(shù)a的取值范圍是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD=$\sqrt{2}$,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點(diǎn).
(Ⅰ)求證:PO⊥平面ABCD;
(Ⅱ)求這個(gè)四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)f(x)是定義在R上的偶函數(shù),?x∈R,都有f(2-x)=f(2+x),且當(dāng)x∈[0,2]時(shí),f(x)=2x-2,若函數(shù)g(x)=f(x)-loga(x+1)(a>0,a≠1)在區(qū)間(-1,9]內(nèi)恰有三個(gè)不同零點(diǎn),則實(shí)數(shù)a的取值范圍是($\frac{1}{9}$,$\frac{1}{5}$)∪($\sqrt{3}$,$\sqrt{7}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足:①an>0,②a1=2,③對(duì)任意n∈N+有$a_{n+1}^2-{a_n}{a_{n+1}}-2a_n^2=0$
(1)求an及Sn;
(2)已知數(shù)列{bn}的前n項(xiàng)和為T(mén)n,若${b_n}+{b_{n+1}}=({sin^2}\frac{nπ}{2}-{cos^2}\frac{nπ}{2})•{log_2}{a_n}$;求T2016的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)y=$\frac{1}{{\sqrt{2-3x}}}+{(2x-1)^0}$的定義域是$\{x|x<\frac{2}{3}且x≠\frac{1}{2}\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2017屆湖北襄陽(yáng)四中高三七月周考三數(shù)學(xué)(文)試卷(解析版) 題型:解答題

選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線C的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線L的參數(shù)方程是(t為參數(shù)).

(1)求曲線C的直角坐標(biāo)方程和直線L的普通方程;

(2)設(shè)點(diǎn)P(m,0),若直線L與曲線C交于兩點(diǎn)A,B,且,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)集合S={y|y=2x,x∈R},T={(x,y)|y=x2+1,x∈R},則S∩T是( 。
A.B.{0}C.{(0,1)}和{(1,2)}D.{1}

查看答案和解析>>

同步練習(xí)冊(cè)答案