【題目】如圖所示,已知☉O1與☉O2相交于A,B兩點,過點A作☉O1的切線交☉O2于點C,過點B作兩圓的割線,分別交☉O1、☉O2于點D、E,DE與AC相交于點P.若AD是☉O2的切線,且PA=6,PC=2,BD=9,則AB的長為____.
【答案】6
【解析】
試題分析:由 與 相切 ,再由切割線定理得
,再相交弦定理知 ,又由切割線定理可得 易證 , 所以 .
試題解析:因為AC與☉O1相切,切點為A,所以∠BAC=∠ADB,
又∠BAC=∠BEC,所以∠ADB=∠BEC.所以AD∥CE,所以△CPE∽△APD,
所以,即CE=AD,因為AP為☉O1的切線,PBD為☉O1的割線,所以由切割線定理得PA2=PB·PD=PB·(PB+BD),即36=PB·(PB+9),解得,在☉O2中,由相交弦定理知PB·PE=PA·PC,即3PE=2×6,得PE=4,又因為AD為☉O2的切線,DBE為☉O2的割線,所以由切割線定理可得DA2=DB·DE,即DA2=9×(9+3+4),得DA=12,所以CE=4.
易證△BPA∽△CPE,所以,所以AB=CE=6.
科目:高中數(shù)學 來源: 題型:
【題目】已知 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| ﹣ |= ,求證: ⊥ ;
(2)設 =(0,1),若 + = ,求α,β的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{}中,,且對任意正整數(shù)都成立,數(shù)列{}的前n項和為Sn。
(1)若,且,求a;
(2)是否存在實數(shù)k,使數(shù)列{}是公比不為1的等比數(shù)列,且任意相鄰三項按某順序排列后成等差數(shù)列,若存在,求出所有k值,若不存在,請說明理由;
(3)若。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖F1、F2是橢圓C1:+y2=1與雙曲線C2的公共焦點,A、B分別是C1、C2在第二、四象限的公共點,若四邊形AF1BF2為矩形,則C2的離心率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等比數(shù)列{an}滿足:a1= ,a1 , a2 , a3﹣ 成等差數(shù)列,公比q∈(0,1)
(1)求數(shù)列{an}的通項公式;
(2)設bn=2nan , 求數(shù)列{bn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用數(shù)學歸納法證明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12═ 時,由n=k的假設到證明n=k+1時,等式左邊應添加的式子是( )
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2ax﹣2alnx(a∈R),則下列說法正確的是 ①當a<0時,函數(shù)y=f(x)有零點;
②若函數(shù)y=f(x)有零點,則a<0;
③存在a>0,函數(shù)y=f(x)有唯一的零點;
④若函數(shù)y=f(x)有唯一的零點,則a≤1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司研究開發(fā)了一種新產品,生產這種新產品的年固定成本為150萬元,每生產千件,需另投入成本為 (萬元), .每件產品售價為500元.該新產品在市場上供不應求可全部賣完.
(Ⅰ)寫出年利潤(萬元)關于年產量(千件)的函數(shù)解析式;
(Ⅱ)當年產量為多少千件時,該公司在這一新產品的生產中所獲利潤最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com