已知,函數(shù).
⑴若不等式對任意恒成立,求實數(shù)的最值范圍;
⑵若,且函數(shù)的定義域和值域均為,求實數(shù)的值.

(1);(2).

解析試題分析:(1)根據(jù)題意,若不等式對任意恒成立,參編分離后即可得:,從而問題等價于求使對于任意恒成立的的范圍,而,當且僅當時,“=”成立,故實數(shù)的取值范圍是;(2)由題意可得為二次函數(shù),其對稱軸為,因此當時,可得其值域應為,從而結合條件的定義域和值域都是可得關于的方程組,即可解得.
試題解析:(1)∵,∴可變形為:,而,當且僅當時,“=”成立,∴要使不等式對任意恒成立,只需,即實數(shù)的取值范圍是;                
(2)∵,∴其圖像對稱軸為,根據(jù)二次函數(shù)的圖像,可知上單調遞減,∴當時,其值域為,又由的值域是,
.
考點:1.恒成立問題的處理方法;2.二次函數(shù)的值域.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,n臺機器人M1,M2,……,Mn位于一條直線上,檢測臺M在線段M1 Mn上,n臺機器人需把各自生產的零件送交M處進行檢測,送檢程序設定:當Mi把零件送達M處時,Mi+1即刻自動出發(fā)送檢(i=1,2,……,n-1)已知Mi的送檢速度為V(V>0), 且,n臺機器人送檢時間總和為f(x).

 
(1)求f(x)的表達式;
(2)當n=3時,求x的值使得f(x)取得最小值;
(3)求f(x)取得最小值時,x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù)
(1)當時,的最大值為,求的最小值;
(2)對于任意的,總有,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定義域為的函數(shù)同時滿足以下三個條件:
①對任意的,總有;

③當,且時,成立.
稱這樣的函數(shù)為“友誼函數(shù)”.
請解答下列各題:
(1)已知為“友誼函數(shù)”,求的值;
(2)函數(shù)在區(qū)間上是否為“友誼函數(shù)”?請給出理由;
(3)已知為“友誼函數(shù)”,假定存在,使得,且,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

有一種密英文的明文(真實文)按字母分解,其中英文的a,b,c, ,z的26個字母(不分大小寫),依次對應1,2,3, ,26這26個自然數(shù),見如下表格:

a
b
c
d
e
f
g
h
i
j
k
l
m
1
2
3
4
5
6
7
8
9
10
11
12
13
n
o
p
q
r
s
t
u
v
w
x
y
z
14
15
16
17
18
19
20
21
22
23
24
25
26
 
給出如下變換公式:

將明文轉換成密文,如,即變成;如,即變成.
(1)按上述規(guī)定,將明文譯成的密文是什么?
(2)按上述規(guī)定,若將某明文譯成的密文是,那么原來的明文是什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為實常數(shù)).
(1)若,求函數(shù)的單調區(qū)間;
(2)設在區(qū)間上的最小值為,求的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

對于函數(shù)f(x)若存在x0∈R,f(x0)=x0成立,則稱x0為f(x)的不動點.已知f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當a=1,b=-2時,求函數(shù)f(x)的不動點;
(2)若對任意實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上A,B兩點的橫坐標是函數(shù)f(x)的不動點,且A,B兩點關于直線y=kx+對稱,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

湛江為建設國家衛(wèi)生城市,現(xiàn)計劃在相距20 km的赤坎區(qū)(記為A)霞山區(qū)(記為B)兩城區(qū)外以AB為直徑的半圓弧上選擇一點C建造垃圾處理廠,其對市區(qū)的影響度與所選地 
點到市區(qū)的距離有關,對赤坎區(qū)和霞山區(qū)的總影響度為兩市區(qū)的影響度之和,記C點到赤坎區(qū)的距離為x km,建在C處的垃圾處理廠對兩市區(qū)的總影響度為y.統(tǒng)計調查表明:垃圾處理廠對赤坎區(qū)的影響度與所選地點到赤坎區(qū)的距離的平方成反比,比例系數(shù)為4;對霞山區(qū)的影響度與所選地點到霞山區(qū)的距離的平方成反比,比例系數(shù)為k.當垃圾處理廠建在的中點時,對兩市區(qū)的總影響度為0.065.
(1)將y表示成x的函數(shù);
(2)討論(1)中函數(shù)的單調性,并判斷上是否存在一點,使建在此處的垃圾處理廠對城A和城B的總影響度最?若存在,求出該點到赤坎區(qū)的距離;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

函數(shù) 則的解集為________.

查看答案和解析>>

同步練習冊答案