19.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow$=(sin2x,cos2x),f(x)=$\overrightarrow{a}$•$\overrightarrow$,則函數(shù)f(x)的最小正周期為(  )
A.πB.C.$\frac{π}{2}$D.

分析 利用平面向量的數(shù)量積公式與和角公式化簡(jiǎn)f(x),根據(jù)周期公式得出結(jié)論.

解答 解:f(x)=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$),
∴f(x)的最新正周期為T(mén)=$\frac{2π}{2}$=π.
故選A.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,正弦函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.△ABC的內(nèi)角A、B、C的對(duì)邊分別為a,b,c,且csinA=$\sqrt{3}$acosC.
(1)求C;
(2)若b=1,c=$\sqrt{7}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)△ABC的內(nèi)角A,B,C,已知C=$\frac{π}{3}$,若向量$\overrightarrow{m}$=(1,sinA)與向量$\overrightarrow{n}$=(2,sinB)共線(xiàn),則△ABC的內(nèi)角A=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知向量$\overrightarrow{a}$=(2cosωx,1),$\overrightarrow$=($\sqrt{3}$sinωx-cosωx,1)(ω>0),函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$,若函數(shù)f(x)的圖象與x軸的兩個(gè)相鄰交點(diǎn)的距離為$\frac{π}{2}$
(1)求函數(shù)f(x)的單調(diào)增區(qū)間
(2)若x∈($\frac{7π}{12}$,$\frac{5π}{6}$)時(shí),f(x)=-$\frac{6}{5}$,求cos2x的值
(3)若cosx$≥\frac{1}{2}$,x∈(0,π),且f(2x)=m有且僅有一個(gè)實(shí)根,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{2}{3}$x3-2ax2-3x
(1)當(dāng)a=0時(shí),求曲線(xiàn)y=f(x)在點(diǎn)(3,f(3))的切線(xiàn)方程
(2)對(duì)一切x∈(0,+∞),af′(x)+4a2x≥lnx-3a-1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=$(\frac{1}{2})^{|x+m-1|}$是偶函數(shù),g(x)=$\left\{\begin{array}{l}{f(x)}&{x≥0}\\{{x}^{2}+2x+m}&{x<0}\end{array}\right.$,則方程g(x)=|x+$\frac{3}{4}$|實(shí)數(shù)根的個(gè)數(shù)是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.甲、乙、丙3人從1樓乘電梯去商場(chǎng)的3到9樓,每層樓最多下2人,則下電梯的方法有( 。
A.210種B.84種C.343種D.336種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若函數(shù)f(x)=(x2-ax+a+1)ex(a∈N)在區(qū)間(1,3)只有1個(gè)極值點(diǎn),則a等于(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.?dāng)?shù)列{an}中,an+1=2+$\sqrt{4{a}_{n}-{{a}_{n}}^{2}}$,則a1+a2018的最大值為( 。
A.2B.4C.4-2$\sqrt{2}$D.4+2$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案