【題目】已知函數(shù).
(1)若,求的單調(diào)性;
(2)若在區(qū)間上有零點,求的取值范圍.
【答案】(1)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為;(2).
【解析】
(1)求出導(dǎo)函數(shù),分別令,解不等式即可求解.
(2)求出函數(shù)的導(dǎo)函數(shù),分類討論的取值范圍,討論函數(shù)的單調(diào)性;當(dāng)時,在區(qū)間上單調(diào)遞增,當(dāng)時,在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,當(dāng)時,在區(qū)間上單調(diào)遞減,通過單調(diào)性求出函數(shù)的最值,進而可確定是否存在零點.
(1)因為,所以,所以.
令,得或;
令,得.
故的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為.
(2)由函數(shù),則
當(dāng)時,在區(qū)間上單調(diào)遞增,
則,,解得;
當(dāng)時,即時,
在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,且
則,解得;
當(dāng)時,即時,在區(qū)間上單調(diào)遞減,
因為,所以在區(qū)間上不存在零點,即,不符合題意.
綜上,的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程是(t是參數(shù)),以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是。
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若兩曲線交點為,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,①已知點,,為曲線上任一點,到點的距離和到點的距離的比值為2;②圓經(jīng)過,,且圓心在直線上.從①②中任選一個條件.
(1)求曲線的方程;
(2)若直線被曲線截得弦長為2,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】計劃在某水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年.將年入流量在以上三段的頻率作為相應(yīng)段的概率,并假設(shè)各年的年入流量相互獨立.
(1)求未來4年中,至多1年的年入流量超過120的概率;
(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量限制,并有如下關(guān)系:
年入流量 | |||
發(fā)電量最多可運行臺數(shù) | 1 | 2 | 3 |
若某臺發(fā)電機運行,則該臺年利潤為5000萬元;若某臺發(fā)電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達(dá)到最大,應(yīng)安裝發(fā)電機多少臺?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幼兒園舉辦“yue”主題系列活動——“悅”動越健康親子運動打卡活動,為了解小朋友堅持打卡的情況,對該幼兒園所有小朋友進行了調(diào)查,調(diào)查結(jié)果如下表:
打卡天數(shù) | 17 | 18 | 19 | 20 | 21 |
男生人數(shù) | 3 | 5 | 3 | 7 | 2 |
女生人數(shù) | 3 | 5 | 5 | 7 | 3 |
(1)根據(jù)上表數(shù)據(jù),求該幼兒園男生平均打卡的天數(shù);
(2)若從打卡21天的小朋友中任選2人交流心得,求選到男生和女生各1人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幼兒園舉辦“yue”主題系列活動——“悅”動越健康親子運動打卡活動,為了解小朋友堅持打卡的情況,對該幼兒園所有小朋友進行了調(diào)查,調(diào)查結(jié)果如下表:
打卡天數(shù) | 17 | 18 | 19 | 20 | 21 |
男生人數(shù) | 3 | 5 | 3 | 7 | 2 |
女生人數(shù) | 3 | 5 | 5 | 7 | 3 |
(1)根據(jù)上表數(shù)據(jù),求該幼兒園男生平均打卡的天數(shù);
(2)若從打卡21天的小朋友中任選2人交流心得,求選到男生和女生各1人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列滿足,,為非零常數(shù).
(1)是否存在實數(shù),使得數(shù)列成為等差數(shù)列或等比數(shù)列,若存在,找出所有的,及對應(yīng)的通項公式;若不存在,說明理由;
(2)當(dāng)時,記,證明:數(shù)列是等比數(shù)列;
(3)求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,面CDEF為正方形,面ABCD為等腰梯形,,,,.
(1)求證:平面FBC;
(2)線段ED上是否存在點Q,使平面平面QBC?證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com