1.若直線ax+y-4=0與直線x-y-2=0的交點位于第一象限,則實數(shù)a的取值范圍是-1<a<2.

分析 聯(lián)立方程組解出交點坐標(biāo),解不等式即可解決.

解答 解:由直線ax+y-4=0與直線x-y-2=0得x=$\frac{6}{a+1}$,y=$\frac{4-2a}{a+1}$.
∵兩直線ax+y-4=0與x-y-2=0相交于第一象限
∴$\frac{6}{a+1}$>0,$\frac{4-2a}{a+1}$>0,
解得:-1<a<2
故答案為:-1<a<2.

點評 本題主要考查直線交點坐標(biāo)的求解,和不等式的應(yīng)用.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=lnx-$\frac{1}{x}$,g(x)=-ax+b.
(I)討論函數(shù)h(x)=f(x)-g(x)單調(diào)區(qū)間;
(II)若直線g(x)=-ax+b是函數(shù)f(x)=lnx-$\frac{1}{x}$圖象的切線,求b-a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.從某學(xué)校的800名男生中隨機抽取50名測量身高,被測學(xué)生身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組:第一組[155,160),第二組[160,165),…,第八組[190,195],下圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為4人.
(1)求第七組的頻率,并估計該校的800名男生的身高的中位數(shù)以及身高在180cm以上(含180cm)的人數(shù);
(2)若從身高屬于第六組和第八組的男生中隨機抽取兩名男生,求他們的身高之差不超過5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知:p:|x+1|≤3,q:x2-2x+1-m2≤0,m>0.
(Ⅰ)若m=2,命題“p或q”為真,“p且q”為假,求實數(shù)x的取值范圍;
(Ⅱ)若p是q的必要不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},則集合{2,7,8}是( 。
A.M∪NB.M∩NC.IM∪∁IND.IM∩∁IN

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和為Sn,a1=2,Sn=λan-2,其中λ為常數(shù).
(Ⅰ)求λ的值及數(shù)列{an}的通項公式;
(Ⅱ)令bn=$\frac{1}{{{{log}_2}{a_n}•{{log}_2}{a_{n+2}}}}$,數(shù)列{bn}的前n項和Tn,求證:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.一個路口的紅綠燈紅燈時間是30秒,黃燈時間是5秒,綠燈時間是40秒,當(dāng)你到達(dá)路口時遇到概率最大的情況是( 。
A.紅燈B.黃燈C.綠燈D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知F1,F(xiàn)2是雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{18}$=1(a>0)的左右焦點,過F1的直線l與雙曲線的左支交于點B,與右支交于點A,若△ABF2為等邊三角形,則△BF1F2的面積為( 。
A.$6\sqrt{3}$B.$8\sqrt{3}$C.$18\sqrt{3}$D.$8\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知定義域為R的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時,f(x)=|x-a2|-a2,且對x∈R,恒有f(x-2)<f(x),則實數(shù)a的取值范圍為(  )
A.$({-\frac{1}{2},\frac{1}{2}})$B.$[{-\frac{1}{2},\frac{1}{2}}]$C.$({-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}})$D.$[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$

查看答案和解析>>

同步練習(xí)冊答案