6.已知圓C過坐標(biāo)原點,面積為2π,且與直線l:x-y+2=0相切,則圓C的方程是(x+$\sqrt{2}$)2+(y+$\sqrt{2}$)2=2或(x-$\sqrt{2}$)2+(y-$\sqrt{2}$)2=2.

分析 設(shè)圓心坐標(biāo)為(a,b),利用圓C過坐標(biāo)原點,面積為2π,且與直線l:x-y+2=0相切,求出a,b,即可求出圓C的方程.

解答 解:設(shè)圓心坐標(biāo)為(a,b),則
∵面積為2π,∴半徑r=$\sqrt{2}$,
∵圓C過坐標(biāo)原點,且與直線l:x-y+2=0相切,
∴$\sqrt{{a}^{2}+^{2}}$=$\frac{|a-b+2|}{\sqrt{2}}$=$\sqrt{2}$,
∴a=b=$±\sqrt{2}$,
∴圓C的方程是(x+$\sqrt{2}$)2+(y+$\sqrt{2}$)2=2或(x-$\sqrt{2}$)2+(y-$\sqrt{2}$)2=2.
故答案為:(x+$\sqrt{2}$)2+(y+$\sqrt{2}$)2=2或(x-$\sqrt{2}$)2+(y-$\sqrt{2}$)2=2.

點評 本題考查的是圓的方程,考查直線與圓的位置關(guān)系,考查學(xué)生的計算能力,利用條件建立方程,求出圓心與半徑是解題的關(guān)鍵所在.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的前n項和為Sn,且3Sn+an-3=0,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=$\frac{1}{2}$log2(1-Sn+1),求數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知拋物線y2=2px(p>0)上一點M到焦點F的距離等于2p,則直線MF的斜率為±$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年山西忻州一中高一上學(xué)期新生摸底數(shù)學(xué)試卷(解析版) 題型:解答題

某商店銷售10臺型和20臺型電腦的利潤為4000元,銷售20臺型和10臺型電腦的利潤為3500元.

(1)求每臺型電腦和型電腦的銷售利潤;

(2)該商店計劃一次購進兩種型號的電腦共100臺,其中型電腦的進貨量不超過A型電腦的2倍.設(shè)購進掀電腦臺,這100臺電腦的銷售總利潤為元.

①求的關(guān)系式;

②該商店購進型、型各多少臺,才能使銷售利潤最大?

(3)實際進貨時,廠家對型電腦出廠價下調(diào))元,且限定商店最多購進型電腦70臺.若商店保持兩種電腦的售價不變,請你以上信息及(2)中的條件,設(shè)計出使這100臺電腦銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知一批產(chǎn)品的次品率為P=0.12,從中任取5件,求取得各次品數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知x>0,求f(x)=$\frac{12}{x}$+3x的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知集合A={x|x2-x-2<0},B={x|$\frac{1}{x-1}$≤1},則A∩B=(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若a=log0.20.3,b=log0.30.2,c=1,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)P為橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上一點,F(xiàn)為橢圓的右焦點,A(2,2),則|PA|-|PF|的最小值為$\sqrt{13}$-4.

查看答案和解析>>

同步練習(xí)冊答案