【題目】中國古代數(shù)學名著《九章算術》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬、“馬主曰:“我馬食半牛,”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟、羊主人說:“我羊所吃的禾苗只有馬的一半,”馬主人說:“我馬所吃的禾苗只有牛的一半,“打算按此比例償還,他們各應償還多少?該問題中,1斗為10升,則馬主人應償還( )升粟?
A. B. C. D.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為F,經(jīng)過點F的直線與拋物線C交于不同的兩點A,B,的最小值為4.
(1)求拋物線C的方程;
(2)已知P,Q是拋物線C上不同的兩點,若直線恰好垂直平分線段PQ,求實數(shù)k 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在極坐標系中,曲線的極坐標方程為,以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,直線的參數(shù)方程為(為參數(shù), ).
(1)求曲線的直角坐標方程和直線的普通方程;
(2)若曲線上的動點到直線的最大距離為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓()的左、右焦點分別是,,點為的上頂點,點在上,,且.
(1)求的方程;
(2)已知過原點的直線與橢圓交于,兩點,垂直于的直線過且與橢圓交于,兩點,若,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓:和定點,是圓上任意一點,線段的垂直平分線交于點,設動點的軌跡為.
(1)求的方程;
(2)過點作直線與曲線相交于,兩點(,不在軸上),試問:在軸上是否存在定點,總有?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=4x+3sinx,x∈(-1,1),如果f(1-a)+f(1-a2)<0成立,則實數(shù)a的取值范圍為( )
A. (0,1) B. C. D. (-∞,-2)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解運動健身減肥的效果,某健身房調(diào)查了20名肥胖者,健身之前他們的體重情況如三維餅圖(1)所示,經(jīng)過四個月的健身后,他們的體重情況如三維餅圖(2)所示.對比健身前后,關于這20名肥胖者,下面結(jié)論不正確的是( )
A.他們健身后,體重在區(qū)間[90kg,100kg)內(nèi)的人數(shù)不變
B.他們健身后,體重在區(qū)間[100kg,110kg)內(nèi)的人數(shù)減少了4人
C.他們健身后,這20位健身者體重的中位數(shù)位于[90kg,100kg)
D.他們健身后,原來體重在[110kg,120kg]內(nèi)的肥胖者體重都至少減輕了10kg
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓()的離心率為,短軸長為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線與橢圓交于不同的兩點,且線段的垂直平分線過定點,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com