14.如圖所示,使電路接通,開關(guān)不同的開閉方式共有(  )
A.11B.12C.20D.21

分析 設(shè)5個(gè)開關(guān)依次為1、2、3、4、5,由電路知識(shí)分析可得電路接通,則開關(guān)1、2與3、4、5中至少有1個(gè)接通,依次分析開關(guān)1、2與3、4、5中至少有1個(gè)接通的情況數(shù)目,由分步計(jì)數(shù)原理,計(jì)算可得答案.

解答 解:根據(jù)題意,設(shè)5個(gè)開關(guān)依次為1、2、3、4、5,
若電路接通,則開關(guān)1、2與3、4、5中至少有1個(gè)接通,
對(duì)于開關(guān)1、2,共有2×2=4種情況,其中全部斷開的有1種情況,則其至少有1個(gè)接通的有4-1=3種情況,
對(duì)于開關(guān)3、4、5,共有2×2×2=8種情況,其中全部斷開的有1種情況,則其至少有1個(gè)接通的8-1=7種情況,
則電路接通的情況有3×7=21種;
故選:D.

點(diǎn)評(píng) 本題考查分步計(jì)數(shù)原理的應(yīng)用,可以用間接法分析開關(guān)至少有一個(gè)閉合的情況,關(guān)鍵是分析出電路解題的條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在三棱錐A-BCD中,AB⊥平面BCD,BC⊥BD,BC=3,BD=4,直線AD與平面BCD所成的角為45°,點(diǎn)E,F(xiàn)分別是AC,AD的中點(diǎn).
(1)求證:EF∥平面BCD;
(2)求三棱錐A-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某商場(chǎng)舉行優(yōu)惠促銷活動(dòng),顧客僅可以從以下兩種優(yōu)惠方案中選擇一種,
方案一:每滿200元減50元:
方案二:每滿200元可抽獎(jiǎng)一次.具體規(guī)則是依次從裝有3個(gè)紅球、1個(gè)白球的甲箱,裝有2個(gè)紅球、2個(gè)白球的乙箱,以及裝有1個(gè)紅球、3個(gè)白球的丙箱中各隨機(jī)摸出1個(gè)球,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)
紅球個(gè)數(shù)3210
實(shí)際付款半價(jià)7折8折原價(jià)
(Ⅰ)若兩個(gè)顧客都選擇方案二,各抽獎(jiǎng)一次,求至少一個(gè)人獲得半價(jià)優(yōu)惠的概率;
(Ⅱ)若某顧客購(gòu)物金額為320元,用所學(xué)概率知識(shí)比較哪一種方案更劃算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知f(x)是定義域?yàn)镽的偶函數(shù),且當(dāng)x≥0時(shí),f(x)=($\frac{1}{2}$)x,則不等式f(x)>$\frac{1}{2}$的解集為( 。
A.(-$\frac{1}{4}$,$\frac{1}{4}$)B.(-$\frac{1}{2}$,$\frac{1}{2}$)C.(-2,2)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=x3-ax2+4,若f(x)的圖象與x軸正半軸有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A.(1,+∞)B.($\frac{3}{2}$,+∞)C.(2,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{2}{3}\sqrt{2}$,且內(nèi)切于圓x2+y2=9.
(1)求橢圓C的方程;
(2)過點(diǎn)Q(1,0)作直線l(不與x軸垂直)與該橢圓交于M、N兩點(diǎn),與y軸交于點(diǎn)R,若$\overrightarrow{RM}$=λ$\overrightarrow{MQ}$,$\overrightarrow{RN}$=$μ\overrightarrow{NQ}$,試判斷λ+μ是否為定值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知非零平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow$•$\overrightarrow{c}$=3,|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{c}$|=2,則向量$\overrightarrow{a}$在向量$\overrightarrow{c}$方向上的投影為$\frac{3}{2}$,$\overrightarrow{a}$•$\overrightarrow$的最小值為$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為1的正方形,PA⊥底面ABCD,PA=AB,點(diǎn)M在棱PD上,PB∥平面ACM.
(1)試確定點(diǎn)M的位置,并說(shuō)明理由;
(2)求二面角M-AC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知$f(x)=sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$滿足$f(x)=-f(x+\frac{π}{2}),f(0)=\frac{1}{2}$,則g(x)=2cos(ωx+φ)在區(qū)間$[0,\frac{π}{2}]$上的最大值為(  )
A.4B.$\sqrt{3}$C.1D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案