7.設(shè)函數(shù)f(x)=$\frac{x}{lnx}$-ax.
(1)若函數(shù)f(x)在(1,+∞)上為減函數(shù),求實(shí)數(shù)a的最小值;
(2)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立,求實(shí)數(shù)a的取值范圍.

分析 (1)由已知得f(x)的定義域?yàn)椋?,1)∪(1,+∞),f′(x)=-a+$\frac{lnx-1}{(lnx)^{2}}$在(1,+∞)上恒成立,由此利用導(dǎo)數(shù)性質(zhì)能求出a的最大值;
(2)命題“若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立”,等價(jià)于“當(dāng)x∈[e,e2]時(shí),有f(x)min≤f′(x)max+a”,由此利用導(dǎo)數(shù)性質(zhì)結(jié)合分類討論思想,能求出實(shí)數(shù)a的取值范圍.

解答 解:(Ⅰ)由已知得f(x)的定義域?yàn)椋?,1)∪(1,+∞),
∵f(x)在(1,+∞)上為減函數(shù),
∴f′(x)=-a+$\frac{lnx-1}{(lnx)^{2}}$≤0在(1,+∞)上恒成立,
-a≤$\frac{1}{(lnx)^{2}}$-$\frac{1}{lnx}$=($\frac{1}{lnx}$-$\frac{1}{2}$)2-$\frac{1}{4}$,
令g(x)=($\frac{1}{lnx}$-$\frac{1}{2}$)2-$\frac{1}{4}$,
故當(dāng)$\frac{1}{lnx}$=$\frac{1}{2}$,即x=e2時(shí),
g(x)的最小值為-$\frac{1}{4}$,∴-a≤-$\frac{1}{4}$,即a≥$\frac{1}{4}$
∴a的最小值為$\frac{1}{4}$.
(Ⅱ)命題“若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立”,
等價(jià)于“當(dāng)x∈[e,e2]時(shí),有f(x)min≤f′(x)max+a”,
由(Ⅰ)知,當(dāng)x∈[e,e2]時(shí),lnx∈[1,2],$\frac{1}{lnx}$∈[$\frac{1}{2}$,1],
f′(x)=-a+$\frac{lnx-1}{(lnx)^{2}}$=-($\frac{1}{lnx}$-$\frac{1}{2}$)2+$\frac{1}{4}$-a,
f′(x)max+a=$\frac{1}{4}$,
問題等價(jià)于:“當(dāng)x∈[e,e2]時(shí),有f(x)min≤$\frac{1}{4}$”,
①當(dāng)-a≤-$\frac{1}{4}$,即a$≥\frac{1}{4}$時(shí),由(Ⅰ),f(x)在[e,e2]上為減函數(shù),
則f(x)min=f(e2)=-ae2+$\frac{{e}^{2}}{2}$≤$\frac{1}{4}$,
∴-a≤$\frac{1}{4{e}^{2}}$-$\frac{1}{2}$,
∴a≥$\frac{1}{2}$-$\frac{1}{4{e}^{2}}$.
②當(dāng)-$\frac{1}{4}$<-a<0,即0<a<$\frac{1}{4}$時(shí),∵x∈[e,e2],∴l(xiāng)nx∈[$\frac{1}{2}$,1],
∵f′(x)=-a+$\frac{lnx-1}{(lnx)^{2}}$,由復(fù)合函數(shù)的單調(diào)性知f′(x)在[e,e2]上為增函數(shù),
∴存在唯一x0∈(e,e2),使f′(x0)=0且滿足:
f(x)min=f(x0)=-ax0+$\frac{{x}_{0}}{ln{x}_{0}}$,
要使f(x)min≤$\frac{1}{4}$,∴-a≤$\frac{1}{4{x}_{0}}$-$\frac{1}{ln{x}_{0}}$<$\frac{1}{4}$-$\frac{1}{2}$=-$\frac{1}{4}$,
與-$\frac{1}{4}$<-a<0矛盾,
∴-$\frac{1}{4}$<-a<0不合題意.
綜上,實(shí)數(shù)a的取值范圍為[$\frac{1}{2}$-$\frac{1}{4{e}^{2}}$,+∞).

點(diǎn)評(píng) 本題主要考查函數(shù)、導(dǎo)數(shù)等基本知識(shí).考查運(yùn)算求解能力及化歸思想、函數(shù)方程思想、分類討論思想的合理運(yùn)用,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若-$\frac{π}{2}≤x≤\frac{π}{2}$,則函數(shù)$y=cosxcos({\frac{π}{2}+x})$的單調(diào)遞減區(qū)間為$[{-\frac{π}{4},\frac{π}{4}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,根據(jù)圖中的數(shù)構(gòu)成的規(guī)律,a所表示的數(shù)是144.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在斜三棱柱ABC-A1B1Cl中,側(cè)面A1ACC1⊥底面ABC,A1C=CA=AB=a,AA1=$\sqrt{2}$a,AB⊥AC,D為AA1的中點(diǎn).
(Ⅰ)求證:CD⊥平面ABB1Al
(Ⅱ)在側(cè)棱BB1上確定一點(diǎn)E,使得二面角E-A1C1一A的大小為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=${(\frac{1}{2})}^{sin(-x)}$的單調(diào)遞增區(qū)間是[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知圓C的方程為x2+y2-4y=0,直線l的方程為y=kx+1.
(1)求圓心的坐標(biāo)和圓的半徑;
(2)求直線l被圓所截得的弦長(zhǎng)最短時(shí)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.把一個(gè)大金屬球表面涂漆,共需油漆2.4公斤.若把這個(gè)大金屬球熔化制成64個(gè)大小都相同的小金屬球,不計(jì)損耗,將這些小金屬球表面都涂漆,需要用漆9.6公斤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,若雙曲線C的一條漸近線的傾斜角等于60°,則雙曲線C的離心率等于(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知復(fù)數(shù)z滿足(1+2i)z=4+3i,則z的共軛復(fù)數(shù)是( 。
A.2-iB.2+iC.1+2iD.1-2i

查看答案和解析>>

同步練習(xí)冊(cè)答案