【題目】如圖,在矩形ABCD中,AB=2,AD=1,MAB的中點(diǎn),將△ADM沿DM翻折.在翻折過(guò)程中,當(dāng)二面角ABCD的平面角最大時(shí),其正切值為( )

A. B. C. D.

【答案】B

【解析】

的中點(diǎn),的中點(diǎn)為,則折疊后有平面,在四棱錐中過(guò)點(diǎn)的垂線,垂足為,再過(guò)的垂線,垂足為,連接,則為二面角的平面角,可用的三角函數(shù)表示的正切值,利用導(dǎo)數(shù)可求其最大值.


的中點(diǎn),的中點(diǎn)為,因?yàn)?/span>為等腰三角形,

,同理 ,所以有平面

因?yàn)?/span>平面,故平面平面

在四棱錐中過(guò)點(diǎn)的垂線,垂足為,再過(guò)的垂線,垂足為,連接

因?yàn)?/span>,平面,平面平面,故平面

因?yàn)?/span>平面,故

,,故平面

平面,故,所以為二面角的平面角.

設(shè),則,,

所以,其中

,則,令,

當(dāng)時(shí),;當(dāng)時(shí),;

所以,故,故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知從地到地有兩條道路可以到達(dá),走道路①準(zhǔn)點(diǎn)到達(dá)的概率為,不準(zhǔn)點(diǎn)到達(dá)的概率為;走道路②準(zhǔn)點(diǎn)到達(dá)的概率為,不準(zhǔn)點(diǎn)到達(dá)的概率為.若甲乙兩車走道路①,丙車由于其他原因走道路②,且三輛車是否準(zhǔn)點(diǎn)到達(dá)相互之間沒(méi)有影響.

1)若三輛車中恰有一輛車沒(méi)有準(zhǔn)點(diǎn)到達(dá)的概率為,求走道路②準(zhǔn)點(diǎn)到達(dá)的概率

2)在(1)的條件下,求三輛車中準(zhǔn)點(diǎn)到達(dá)車輛的輛數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的離心率是,A、B分別為橢圓的左頂點(diǎn)、上頂點(diǎn),原點(diǎn)OAB所在直線的距離為.

I)求橢圓C的方程;

(Ⅱ)已知直線與橢圓相交于不同的兩點(diǎn)M,N(均不是長(zhǎng)軸的端點(diǎn)),,垂足為H,且,求證:直線恒過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

(1)求六月份這種酸奶一天的需求量不超過(guò)300瓶的概率,;

(2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出的所有可能值,并估計(jì)大于零的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出“停課不停學(xué)”的口號(hào),鼓勵(lì)學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績(jī)與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,在高三年級(jí)中隨機(jī)選取名學(xué)生進(jìn)行跟蹤問(wèn)卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于小時(shí)的有人,在這人中分?jǐn)?shù)不足分的有人;在每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不足于小時(shí)的人中,在檢測(cè)考試中數(shù)學(xué)平均成績(jī)不足分的占.

1)請(qǐng)完成列聯(lián)表;并判斷是否有的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”;

分?jǐn)?shù)不少于

分?jǐn)?shù)不足

合計(jì)

線上學(xué)習(xí)時(shí)間不少于小時(shí)

線上學(xué)習(xí)時(shí)間不足小時(shí)

合計(jì)

2)在上述樣本中從分?jǐn)?shù)不足于分的學(xué)生中,按照分層抽樣的方法,抽到線上學(xué)習(xí)時(shí)間不少于小時(shí)和線上學(xué)習(xí)時(shí)間不足小時(shí)的學(xué)生共名,若在這名學(xué)生中隨機(jī)抽取人,求這人每周線上學(xué)習(xí)時(shí)間都不足小時(shí)的概率.(臨界值表僅供參考)

(參考公式,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)為拋物線外一點(diǎn),過(guò)點(diǎn)作拋物線的兩條切線,,切點(diǎn)分別為,

(Ⅰ)若點(diǎn),求直線的方程;

(Ⅱ)若點(diǎn)為圓上的點(diǎn),記兩切線,的斜率分別為,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拿破侖為人好學(xué),是法蘭西科學(xué)院院士,他對(duì)數(shù)學(xué)方面很感興趣,在行軍打仗的空閑時(shí)間,經(jīng)常研究平面幾何。他提出了著名的拿破侖定理:以三角形各邊為邊分別向外(內(nèi))側(cè)作等邊三角形,則它們的中心構(gòu)成一個(gè)等邊三角形。如圖所示,以等邊的三條邊為邊,向外作個(gè)正三角形,取它們的中心,順次連接,得到,圖中陰影部分為的公共部分。若往中投擲一點(diǎn),則該點(diǎn)落在陰影部分內(nèi)的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年“雙十一”期間,某商場(chǎng)舉辦了一次有獎(jiǎng)促銷活動(dòng),顧客消費(fèi)每滿1000元可參加一次抽獎(jiǎng)(例如:顧客甲消費(fèi)930元,不得參與抽獎(jiǎng);顧客乙消費(fèi)3400元,可以抽獎(jiǎng)三次)。如圖1,在圓盤上繪制了標(biāo)有A,B,C,D的八個(gè)扇形區(qū)域,每次抽獎(jiǎng)時(shí)由顧客按動(dòng)按鈕使指針旋轉(zhuǎn)一次,旋轉(zhuǎn)結(jié)束時(shí)指針會(huì)隨機(jī)停在圓盤上的某一個(gè)位置,顧客獲獎(jiǎng)的獎(jiǎng)次由指針?biāo)竻^(qū)域決定(指針與區(qū)域邊界線粗細(xì)忽略不計(jì))。商家規(guī)定:指針停在標(biāo)A,B,C,D的扇形區(qū)域分別對(duì)應(yīng)的獎(jiǎng)金為200元、150元、100元和50元。已知標(biāo)有A,B,C,D的扇形區(qū)域的圓心角成等差數(shù)列,且標(biāo)D的扇形區(qū)域的圓心角是標(biāo)A的扇形區(qū)域的圓心角的4倍.

(I)某顧客只抽獎(jiǎng)一次,設(shè)該顧客抽獎(jiǎng)所獲得的獎(jiǎng)金數(shù)為X元,求X的分布列和數(shù)學(xué)期望;

(II)如圖2,該商場(chǎng)統(tǒng)計(jì)了活動(dòng)期間一天的顧客消費(fèi)情況.現(xiàn)按照消費(fèi)金額分層抽樣選出15位顧客代表,其中獲得獎(jiǎng)金總數(shù)不足100元的顧客代表有7位.現(xiàn)從這7位顧客代表中隨機(jī)選取兩位,求這兩位顧客的獎(jiǎng)金總數(shù)和仍不足100元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,多面體中,是正方形,,,,且,,、分別為棱、的中點(diǎn).

(1)求證:平面;

(2)求平面和平面所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案