A. | (0,$\frac{π}{6}$] | B. | [$\frac{π}{6}$,π) | C. | (0,$\frac{π}{3}$] | D. | [$\frac{π}{3}$,π) |
分析 利用正弦定理化簡已知的不等式,再利用余弦定理表示出cosC,將得出的不等式變形后代入表示出的cosC中,得出cosC的范圍,由C為三角形的內(nèi)角,根據(jù)余弦函數(shù)的圖象與性質(zhì)即可求出C的取值范圍.
解答 解:利用正弦定理化簡sin2C≤(sinA-sinB)2+sinAsinB,
即sin2C≤sin2A+sin2B-sinAsinB,
得:c2≤a2+b2-ab,
變形得:b2+a2-c2≥ab,
∴cosC=$\frac{^{2}+{a}^{2}-{c}^{2}}{2ab}$≥$\frac{ab}{2ab}$=$\frac{1}{2}$,
又C為三角形的內(nèi)角,
則C的取值范圍是(0,$\frac{π}{3}$].
故選C.
點評 此題考查了正弦、余弦定理,特殊角的三角函數(shù)值,以及余弦函數(shù)的圖象與性質(zhì),熟練掌握正弦、余弦定理是解本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 無解 | B. | 一解 | C. | 兩解 | D. | 一解或兩解 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{3}{2}$或0 | C. | -$\frac{2}{3}$ | D. | -$\frac{2}{3}$或0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com