求函數(shù)f(x)=3x+
1
3x
的最值.
考點:基本不等式
專題:函數(shù)的性質(zhì)及應用,不等式的解法及應用
分析:本題可以利用基本不等式求出函數(shù)的最小值,得到本題結(jié)論.
解答: 解:∵3x>0,
∴f(x)=3x+
1
3x
2
3x
1
3x
=2.
(當且僅當3x=
1
3x
,即x=0時,取最小值.)
∴函數(shù)f(x)=3x+
1
3x
的最小值為:2.
點評:本題考查了基本不等式,本題難度不大,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某同學對函數(shù)f(x)=xcosx進行研究后,得出以下五個結(jié)論:
①函數(shù)y=f(x)的圖象是中心對稱圖形;
②對任意實數(shù)x,f(x)>0均成立;
③函數(shù)[a,b]的圖象與x軸有無窮多個公共點,且任意相鄰兩點的距離相等;
④函數(shù)y=f(x)的圖象與直線y=x有無窮多個公共點,且任意相鄰兩點的距離相等;
⑤當常數(shù)k滿足|k|>1時,函數(shù)y=f(x)的圖象與直線y=kx有且僅有一個公共點.
其中所有正確結(jié)論的序號是( 。
A、①②④B、①②③④
C、①②④⑤D、①②③④⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(1+x)-
ax
x+1
(a>0).
(1)實數(shù)a為何值時,使得f(x)在(0,+∞)內(nèi)單調(diào)遞增;
(2)證明:(
2014
2015
2015
1
e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sinxcosx-
1
2
cos2x,x∈R,
(1)求函數(shù)f(x)的最小正周期及單調(diào)區(qū)間;
(2)在△ABC中,角A、B、C的對邊分別為a、b、c,且滿足2bcosA=2c-
3
a,求f(B)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中,a2=4,a3+a4=14,bn=3 an
(1)證明:{bn}為等比數(shù)列;
(2)求數(shù)列{nbn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g(x)=
3
x2
-
1
x3
,求導數(shù)g′(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了解某校高三學生的視力情況,隨機抽查了該校50名高三學生,得到如圖所示的頻率分布直方圖.
(Ⅰ)求圖中x的值;
(Ⅱ)從視力不低于1.0的學生中隨機選取2人,設這2人中視力不低于1.2的人數(shù)為ξ,求ξ的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x,g(x)=
1
2 |x|
+2.則函數(shù)g(x)的值域為
 
;滿足方程f(x)-g(x)=0的x的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若α、β均為銳角,且2sinα=sinαcosβ+cosαsinβ,則α與β的大小關(guān)系為( 。
A、α<βB、α>β
C、α≤βD、不確定

查看答案和解析>>

同步練習冊答案