分析 由已知及等差數(shù)列的性質(zhì)可得A+C=3B,結(jié)合三角形內(nèi)角和定理可求B的值,利用三角形面積公式可得$ac=2(2+\sqrt{2})$,利用余弦定理及基本不等式即可解得AC邊的最小值.
解答 解:∵A、$\frac{3}{2}$B、C成等差數(shù)列,
∴A+C=3B,
又∵A+B+C=π,
∴$B=\frac{π}{4}$,
∴由${S_{△ABC}}=\frac{1}{2}acsinB=1+\sqrt{2}$得$ac=2(2+\sqrt{2})$,
∵b2=a2+c2-2accosB=${a^2}+{c^2}-\sqrt{2}ac$,及a2+c2≥2ac,
∴${b^2}≥(2-\sqrt{2})ac=4$,解得:b≥2,
∴b的最小值為2.
故答案為:2.
點(diǎn)評(píng) 本題主要考查了等差數(shù)列的性質(zhì),三角形內(nèi)角和定理,三角形面積公式,余弦定理,基本不等式在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
參加紀(jì)念活動(dòng)的環(huán)節(jié)數(shù) | 0 | 1 | 2 | 3 |
概率 | $\frac{1}{6}$ | a | b | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{30}$ | B. | $\frac{1}{15}$ | C. | $\frac{1}{10}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | $\frac{1}{2}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -56 | B. | -28 | C. | 28 | D. | 56 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-$\frac{1}{3}$,$\frac{1}{2}$] | B. | [-$\frac{1}{2}$,1] | C. | [$\frac{1}{2}$,2] | D. | [$\frac{2}{3}$,$\frac{3}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,0) | B. | (1,1) | C. | (0,2) | D. | (2,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 圓或橢圓 | B. | 拋物線或雙曲線 | C. | 橢圓或雙曲線 | D. | 以上都有可能 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com