【題目】f(x)是定義在R上的奇函數(shù),對x,y∈R都有f(x+y)=f(x)+f(y),且當x>0時,f(x)<0,f(-1)=2.
(1)求證:f(x)為奇函數(shù);
(2)求證:f(x)是R上的減函數(shù);
(3)求f(x)在[-2,4]上的最值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC的三個內(nèi)角為A,B,C,m=(sin B+sin C,0),n=(0,sin A)且
|m|2-|n|2=sin Bsin C.
(1)求角A的大小
(2)求sin B+sin C的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,建立平面直角坐標系xOy,x軸在地平面上,y軸垂直于地平面,單位長度為1千米.某炮位于坐標原點.已知炮彈發(fā)射后的軌跡在方程y=kx- (1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關(guān).炮的射程是指炮彈落地點的橫坐標.
(1)求炮的最大射程;
(2)設(shè)在第一象限有一飛行物(忽略其大小),其飛行高度為3.2千米,試問它的橫坐標a不超過多少時,炮彈可以擊中它?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016·雅安高一檢測)已知函數(shù)f(x)=2x的定義域是[0,3],設(shè)g(x)=f(2x)-f(x+2),
(1)求g(x)的解析式及定義域;
(2)求函數(shù)g(x)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),在以為極點,軸的正半軸為極軸的極坐標系中,射線,與,各有一個交點,當時,這兩個交點間的距離為2,當,這兩個交點重合.
(1)分別說明,是什么曲線,并求出與的值;
(2)設(shè)當時,與,的交點分別為,當,與,的交點分別為,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),且當時, .
(1)求函數(shù)的解析式;
(2)現(xiàn)已畫出函數(shù)在軸左側(cè)的圖象,如圖所示,請補全完整函數(shù)的圖象;
(3)根據(jù)(2)中畫出的函數(shù)圖像,直接寫出函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ( )的左右焦點分別為, ,離心率為,點在橢圓上, , ,過與坐標軸不垂直的直線與橢圓交于, 兩點, 為, 的中點.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點,且,求直線所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,已知,點、分別在、上,且,將四邊形沿折起,使點在平面上的射影在直線上.
(I)求證: ;
(II)求點到平面的距離;
(III)求直線與平面所成的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com