f(x)=(x-1)•|x-3|,x∈R,若f(x)=ax有3個不相等的實數(shù),求a的取值范圍.
考點:函數(shù)的零點與方程根的關(guān)系
專題:計算題,作圖題,函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:由題意知0不是f(x)=ax的根,從而f(x)=ax的根的個數(shù)即y=
(x-1)|x-3|
x
與y=a的圖象的交點的個數(shù),作圖求解.
解答: 解:易知0不是f(x)=ax的根,
故f(x)=ax的根的個數(shù)即y=
(x-1)|x-3|
x
與y=a的圖象的交點的個數(shù),
作y=
(x-1)|x-3|
x
與y=a的圖象如下,

由圖象可知,0<a<4-2
3
,或a>4+2
3
點評:本題考查了學生的作圖用圖的能力及基本不等式的應(yīng)用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=xex,g(x)=ax2+x.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)≥g(x)在[0,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關(guān)于x的方程x2+3x+2a-3=0在(1,3]上有解,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正三棱錐的底面邊長為
2
,各側(cè)面均為直角三角形,則它的外接球體積為(  )
A、
4
3
π
27
B、
2
π
3
C、
3
π
2
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=5-
6
x
,則f(x)在x∈(0,+∞)是
 
(增函數(shù),減函數(shù))若f(x)在[a,b](0<a<b)的值域是[a,b],則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-bx2+cx(b,c∈R),其圖象記為曲線C.
(Ⅰ)若f(x)在x=1處取得極值-1,求b,c的值;
(Ⅱ)若f(x)有三個不同的零點,分別為x1,x2,x3,且x3>x2>x1=0,過點O(x1,f(x1))作曲線C的切線,切點為A(x0,f(x0))(點A異于點O).
(i)證明:x0=
x2+x3
2

(ii)若三個零點均屬于區(qū)間[0,2),求
f(x0)
x0
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

兩燈塔A、B與海洋觀察站C的距離都等于a km,燈塔A在觀察站C的北偏東30°,燈塔B在觀察站C南偏東60°,則A、B之間的距離為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)l、m、n是互不重合的直線,α、β是不重合的平面,則下列命題為真命題的是( 。
A、若l⊥α,l∥β,則α⊥β
B、若α⊥β,l?α,則l⊥β
C、若l⊥n,m⊥n,則l∥m
D、若α⊥β,l?α,n?β則l⊥n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=xex的零點個數(shù)是
 

查看答案和解析>>

同步練習冊答案