函數(shù)f(x)=2x和g(x)=x3的圖象的示意圖如圖所示,設(shè)兩函數(shù)的圖象交于點(diǎn)A(x1,y1),B(x2,y2),且x1<x2
①請(qǐng)指出圖中曲線C1,C2分別對(duì)應(yīng)哪一個(gè)函數(shù)?
②證明:x1∈[1,2],且x2∈[9,10]
③結(jié)合函數(shù)圖象,判斷f(6),g(6),f(2008),g(2008)的大小,并按從小到大的順序排列
考點(diǎn):函數(shù)的圖象
專題:證明題,函數(shù)的性質(zhì)及應(yīng)用
分析:(I)根據(jù)冪函數(shù)y=x3過原點(diǎn),而C1過原點(diǎn),對(duì)應(yīng)的函數(shù)為g(x)=x3
(II)構(gòu)造新函數(shù),使得兩個(gè)函數(shù)做差,則x1,x2為函數(shù)φ(x)的零點(diǎn),利用零點(diǎn)的判定定理進(jìn)行驗(yàn)證,在一個(gè)區(qū)間的兩個(gè)端點(diǎn)處函數(shù)值的符號(hào).
(III)當(dāng)x1<x<x2時(shí),f(x)<g(x),當(dāng)x>x2時(shí),f(x)>g(x),根據(jù)兩個(gè)不同的區(qū)間上函數(shù)的單調(diào)性的不同,看出兩個(gè)函數(shù)值的大小.
解答: 解:(I)∵C1過(0,0),對(duì)應(yīng)的函數(shù)為g(x)=x3,C2對(duì)應(yīng)的函數(shù)為f(x).
(II)證明:
令φ(x)=f(x)-g(x)=2x-x3,則x1,x2為函數(shù)φ(x)的零點(diǎn),
由于φ(1)=1>0,φ(2)=-4<0,φ(9)=29-93<0,φ(10)=210-103>0,
所以方程φ(x)=f(x)-g(x)的兩個(gè)零點(diǎn)x1∈(1,2),x2∈(9,10)
∴x1∈[1,2],x2∈[9,10]
(III)從圖象上可以看出,當(dāng)x1<x<x2時(shí),f(x)<g(x),
∴f(6)<g(6).
當(dāng)x>x2時(shí),f(x)>g(x),
∴g(2008)<f(2008),
∵g(6)<g(2008),
∴f(6)<g(6)<g(2008)<f(2008).
點(diǎn)評(píng):本題考查指數(shù)函數(shù)與冪函數(shù)的增長(zhǎng)的差異,解題的關(guān)鍵是知道指數(shù)函數(shù)是一個(gè)爆炸函數(shù),在一個(gè)范圍上變化的特別快,同時(shí)本題也體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC內(nèi)接于圓O,AB是圓O的直徑,AB=2,BC=1,DC=
3
,四邊形DCBE為平行四邊形,DC⊥平面ABC.
(1)求三棱錐C-ABE的體積;
(2)證明:平面ACD⊥平面ADE;
(3)在CD上是否存在一點(diǎn)M,使得MO∥平面AE?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=x2-2x-4的定義域?yàn)閇0,m],值域?yàn)閇-5,-4],則m取值范圍是( 。
A、[0,1]
B、(1,2]
C、[1,2]
D、[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙O的方程x2+y2+4x-2y=0,直線l的傾斜角為45°,圓心O到直線l的距離為
2

(1)求直線l的方程;
(2)判斷l(xiāng)與⊙O的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,b∈R,下列式子中能成立的個(gè)數(shù)為( 。
①a2+3>2a;②a5+b5>a3b2+a2b3;③a2+b2≥2(a-b-1);④
a2+b2
ab
≥2.
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合p={x|x>1},Q={x|x2-x>0},則下列結(jié)論正確的是( 。
A、p=QB、p?Q
C、p⊆QD、Q⊆p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)空間幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個(gè)幾何體的體積是( 。
A、8B、12C、16D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

到兩定點(diǎn)F1(-4,0),F(xiàn)2(4,0)的距離之和為8的點(diǎn)的軌跡是( 。
A、橢圓B、線段C、圓D、直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在集合{a,b,c,d}上定義兩種運(yùn)算如下:
abcd?abcd
aabcdaaaaa
bbbbbbabcd
ccbcbcacca
ddbbddadad
那么d?(a⊕c)=( 。
A、aB、bC、cD、d

查看答案和解析>>

同步練習(xí)冊(cè)答案