3.已知函數(shù)f(x)在其定義區(qū)間[a,b]上滿足①f(x)>0;②f′(x)<0;③對任意的x1,x2∈[a,b],式子$f({\frac{{{x_1}+{x_2}}}{2}})$≤$\frac{{f({x_1})+f({x_2})}}{2}$恒成立.記S1=$\int_{\;\;a}^{\;\;b}$f(x)dx,S2=$\frac{f(a)+f(b)}{2}$•(b-a),S3=f(b)(b-a),則S1,S2,S3的大小關(guān)系為s3<s1≤s2.(按由小到大的順序)

分析 根據(jù)微積分中值定理,可判斷s3<s1,再由定積分的幾何意義,函數(shù)的凹凸性,即可判斷s1≤s2的大。

解答 解:由微積分中值定理:可知若函數(shù) f(x) 在 閉區(qū)間[a,b]上連續(xù),則在積分區(qū)間[a,b]上至少存在一個點 ξ,
使得:$\int_{\;\;a}^{\;\;b}$f(x)dx=f(ξ)(b-a),a≤ξ≤b,
∵f′(x)<0,f(x)在定義區(qū)間[a,b]單調(diào)遞減,f(b)<f(ξ),
∴s3<S1,
對任意的x1,x2∈[a,b],式子$f({\frac{{{x_1}+{x_2}}}{2}})$≤$\frac{{f({x_1})+f({x_2})}}{2}$恒成立,
函數(shù)圖象可知:當(dāng)$f({\frac{{{x_1}+{x_2}}}{2}})$=$\frac{{f({x_1})+f({x_2})}}{2}$時,
由定積分的幾何意義可知,S1=$\int_{\;\;a}^{\;\;b}$f(x)dx=$\frac{f(a)+f(b)}{2}$•(b-a)=S2,
當(dāng)$f({\frac{{{x_1}+{x_2}}}{2}})$<$\frac{{f({x_1})+f({x_2})}}{2}$,
由函數(shù)圖象可知:函數(shù)單調(diào)遞減且為凹函數(shù),根據(jù)定積分的幾何意義可知:
S1=$\int_{\;\;a}^{\;\;b}$f(x)dx<$\frac{f(a)+f(b)}{2}$•(b-a)=S2,
∴s1≤s2
綜上可知:s3<s1≤s2
故答案為:s3<s1≤s2

點評 本題考查微積分中值定理和函數(shù)凹凸性的判斷,利用凹凸性判斷定積分的大小,過程繁瑣,綜合能力強,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.閱讀如圖的程序框圖,運行相應(yīng)的程序,則輸出a的值為( 。
A.101B.102C.103D.104

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知A={x|x2+x-2>0},B={x|x2+x-6≤0},則A∩B=( 。
A.(-3,-2]∪(1,+∞)B.(-3,-2]∪(1,2)C.[-3,-2)∪(1,2]D.(-∞,-3]∪(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.P是棱長為2的正四面體內(nèi)任意一點,則它到該正四面體各個面的距離之和等于$\frac{2\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知S1=$\int_1^2$xdx,S2=$\int_1^2$exdx,S3=$\int_1^2$x2dx,則S1,S2,S3的大小關(guān)系為( 。
A.S1<S2<S3B.S1<S3<S2C.S3<S2<S1D.S2<S3<S1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知不等式x2-x≤0的解集為[a,b],則${∫}_{a}^$x(x-1)dx=-$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知角θ的頂點在坐標原點,始邊為x軸的正半軸,若A(x,-1)是角θ終邊上的一點,且cosθ=$\frac{2\sqrt{5}}{5}$,則x的值為( 。
A.-2B.2C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.與向量$\overrightarrow{a}$=(5,12)平行的單位向量為±($\frac{5}{13}$,$\frac{12}{13}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)的圖象如圖所示,f′(x)是f(x)的導(dǎo)函數(shù),則下列式子正確的是(  )
A.0<f′(1)<f′(2)<f(2)-f(1)B.0<f′(2)<f(2)-f(1)<f′(1)C.0<f′(2)<f′(1)<f(2)-f(1)D.0<f(2)-f(1)<f′(1)<f′(2)

查看答案和解析>>

同步練習(xí)冊答案