A. | 8 | B. | 4$\sqrt{3}$ | C. | 4+2$\sqrt{3}$ | D. | 4+2$\sqrt{6}$ |
分析 由三視圖可知:原幾何體是一個(gè)如圖所示的三棱錐,點(diǎn)O為邊AC的中點(diǎn),且PO⊥底面ABC,OB⊥AC,PO=AC=OB=2.據(jù)此可計(jì)算出該棱錐的全面積.
解答 解:由三視圖可知:原幾何體是一個(gè)如圖所示的三棱錐,點(diǎn)O為邊AC的中點(diǎn),且PO⊥底面ABC,OB⊥AC,PO=AC=OB=2.
可求得S△PAC=$\frac{1}{2}$×2×2=2,S△ABC=$\frac{1}{2}$×2×2=2.
∵PO⊥AC,
∴在Rt△POA中,由勾股定理得PA=$\sqrt{5}$.
同理AB=BC=PC=PA=$\sqrt{5}$.
由PO⊥底面ABC,得PO⊥OB,
在Rt△POB中,由勾股定理得PB=2$\sqrt{2}$.
由于△PAB是一個(gè)腰長為$\sqrt{5}$,底邊長為2$\sqrt{2}$的等腰三角形,可求得底邊上的高h(yuǎn)=$\sqrt{3}$.
∴S△PAB=$\frac{1}{2}$×2$\sqrt{2}$×$\sqrt{3}$=$\sqrt{6}$.
同理S△PBC=$\sqrt{6}$.
故該棱錐的全面積=2+2+$\sqrt{6}$+$\sqrt{6}$=4+2$\sqrt{6}$.
故選:D
點(diǎn)評 本題考查的知識(shí)點(diǎn)是由三視圖求體積和表面積,解決本題的關(guān)鍵是得到該幾何體的形狀.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x<0} | B. | {x|1≤x<2} | C. | {x|0<x≤1} | D. | {x|x<1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x≤3,x3-27≤0 | B. | ?x>3,x3-27≤0 | C. | ?x>3,x3-27≤0 | D. | ?x≤3,x3-27≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com