7.甲、乙兩人玩游戲,規(guī)則如下:第奇數(shù)局,甲贏的概率為$\frac{3}{4}$,第偶數(shù)局,乙贏的概率為$\frac{3}{4}$,每一局沒有平局,規(guī)定:當(dāng)其中一人贏的局?jǐn)?shù)比另一人贏的局?jǐn)?shù)多2次時(shí)游戲結(jié)束,則游戲結(jié)束時(shí),甲乙兩人玩的局?jǐn)?shù)的數(shù)學(xué)期望為$\frac{16}{3}$.

分析 設(shè)游戲結(jié)束時(shí),甲乙兩人玩的局?jǐn)?shù)的數(shù)學(xué)期望E,由題意得到E=$\frac{3}{8}×2+\frac{5}{8}(E+2)$,由此能求出游戲結(jié)束時(shí),甲乙兩人玩的局?jǐn)?shù)的數(shù)學(xué)期望.

解答 解:設(shè)游戲結(jié)束時(shí),甲乙兩人玩的局?jǐn)?shù)的數(shù)學(xué)期望E,
∵第奇數(shù)局,甲贏的概率為$\frac{3}{4}$,第偶數(shù)局,乙贏的概率為$\frac{3}{4}$,每一局沒有平局,
當(dāng)其中一人贏的局?jǐn)?shù)比另一人贏的局?jǐn)?shù)多2次時(shí)游戲結(jié)束,
∴E=$\frac{3}{8}×2+\frac{5}{8}(E+2)$,
解得E=$\frac{16}{3}$.
∴游戲結(jié)束時(shí),甲乙兩人玩的局?jǐn)?shù)的數(shù)學(xué)期望為$\frac{16}{3}$.
故答案為:$\frac{16}{3}$.

點(diǎn)評(píng) 本題考查離散型隨機(jī)變量的數(shù)學(xué)期望的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意數(shù)學(xué)期望的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,已知拋物線y2=2px(p>0)上一點(diǎn)P(${\frac{3}{4}$,m)到準(zhǔn)線的距離與到原點(diǎn)O的距離相等,拋物線的焦點(diǎn)為F.
(1)求拋物線的方程;
(2)若A為拋物線上一點(diǎn)(異于原點(diǎn)O),點(diǎn)A處的切線交x軸于點(diǎn)B,過A作準(zhǔn)線的垂線,垂足為點(diǎn)E.試判斷四邊形AEBF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓的圓心在直線l:y=2x-1上,且與兩坐標(biāo)軸均相切,求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={0,2,3},B={1,2,3},從A,B中各取一個(gè)數(shù),則這兩個(gè)數(shù)之和等于3的概率是( 。
A.$\frac{2}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,已知AC=4,BC=5.
(1)若∠A=60°,求cosB的值;
(2)若cos(A-B)=$\frac{7}{8}$,點(diǎn)D在邊BC上,滿足DB=DA,求CD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知復(fù)數(shù)z滿足z(1-i)=1+i,則z的共軛復(fù)數(shù)$\overline{z}$為( 。
A.iB.-iC.1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.將一枚均勻的硬幣連擲4次,計(jì)算:
(1)4次都是正面朝上的概率;
(2)至少有一次正面朝上的概率;
(3)至多有一次正面朝上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知單位向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$的夾角為60°,則$\overrightarrow{e_1}$•$\overrightarrow{e_2}$=$\frac{1}{2}$,|${\overrightarrow{e_1}$-λ$\overrightarrow{e_2}}$|(λ∈R)的最小值是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè){an}是有窮數(shù)列,且項(xiàng)數(shù)n≥2.定義一個(gè)變換Ψ:將數(shù)列a1,a2,a3,…,an變成a3,a4,…,an,an+1,其中an+1=a1+a2是變換所產(chǎn)生的一項(xiàng).從數(shù)列1,2,3…,22016開始,反復(fù)實(shí)施變換Ψ,直到只剩下一項(xiàng)而不能變換為止,則變換所產(chǎn)生的所有項(xiàng)的和為(  )
A.(22015+240312016B.22015+24031C.2016(22015+24031D.2016(22016+24032

查看答案和解析>>

同步練習(xí)冊(cè)答案