cosα+
3
sinα化簡(jiǎn)的結(jié)果可以是( 。
A、cos(-α)
B、2cos(
π
3
-α)
C、
1
2
cos(
π
3
-α)
D、2cos(
π
6
-α)
考點(diǎn):兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:提取公因式,湊出余弦的兩角和公式,進(jìn)而求得答案.
解答: 解:cosα+
3
sinα=2(
1
2
cosα+
3
2
sinα)=2cos(
π
3
-α),
故選B.
點(diǎn)評(píng):本題主要考查了兩角和與差的正弦函數(shù)公式.注重了對(duì)學(xué)生基礎(chǔ)知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿足約束條件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為8,點(diǎn)P為曲線y=-
1
3x2
(x<0)上動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)(a,b)的最小距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=2sin(
1
2
x+
π
4
)
的周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面向量
a
=(-1,2),
b
=(3,4),則向量
a
在向量
b
方向的投影是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n項(xiàng)和為Sn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=an•2n-1,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列
2
1×3
4
3×5
,
6
5×7
,
8
7×9
,
10
9×11
,…的一個(gè)通項(xiàng)公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

袋中裝有4個(gè)大小相同的小球,球上分別編有數(shù)字l,2,3,4.
(Ⅰ)若逐個(gè)不放回取球兩次,求第一次取到球的編號(hào)為偶數(shù)且兩個(gè)球的編號(hào)之和能被3整除的概率;
(Ⅱ)若先從袋中隨機(jī)取一個(gè)球,將球放回袋中,然后再?gòu)拇须S機(jī)取一個(gè)球,兩球的編號(hào)組成有序?qū)崝?shù)對(duì)(a,b),求點(diǎn)(a,b)落在圓x2+y2=16內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)半圓形湖面景點(diǎn)的示意圖,已知AB為直徑,且AB=2km,O為圓心,C為圓周上靠近A的一點(diǎn),D為圓周上靠近B的一點(diǎn),且CD∥AB,現(xiàn)在準(zhǔn)備從A經(jīng)過(guò)C到D建造一條觀光路線,其中A到C是圓弧
AC
,C到D是線段CD,設(shè)∠AOC=x rad,觀光路線總長(zhǎng)為y km.
(1)求y關(guān)于x的函數(shù)解析式,并指出該函數(shù)的定義域;
(2)求觀光路線總長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
1
x-1
.證明:f(x)在(-∞,1)內(nèi)單調(diào)遞減.

查看答案和解析>>

同步練習(xí)冊(cè)答案