分析 (1)由題意知AN⊥NO,且|AN|=|ON|,從而可得點(diǎn)N(-$\frac{a}{2}$,-$\frac{a}{2}$),從而可得a2=3b2,從而求橢圓的離心率;
(2)由題意作圖象,設(shè)直線AD與直線BC相交于點(diǎn)M,從而利用平行及相似證明即可.
解答 解:(1)∵$\overrightarrow{AN}$$•\overrightarrow{MN}$=0,
∴AN⊥NO,
又∵|$\overrightarrow{MN}$|=2|$\overrightarrow{AN}$|,
∴|AN|=|ON|,又∵|OA|=a,
∴點(diǎn)N(-$\frac{a}{2}$,-$\frac{a}{2}$),
故$\frac{(-\frac{a}{2})^{2}}{{a}^{2}}$+$\frac{(-\frac{a}{2})^{2}}{^{2}}$=1,
解得,a2=3b2,
故e=$\frac{c}{a}$=$\frac{\sqrt{2}b}{\sqrt{3}b}$=$\frac{\sqrt{6}}{3}$,
故該橢圓的離心率為$\frac{\sqrt{6}}{3}$;
(2)證明:由題意作圖象如右圖,
設(shè)直線AD與直線BC相交于點(diǎn)M,
∵O是AB的中點(diǎn),
又∵AD∥OC,
∴OC是△ABM的中位線,
∴BC=BM,
∵DE∥BM,
∴$\frac{DP}{MC}$=$\frac{AP}{AC}$=$\frac{PE}{BC}$,
∴DP=PE,
∴|$\overrightarrow{DE}$|=2|$\overrightarrow{DP}$|.
點(diǎn)評 本題考查了數(shù)形結(jié)合的思想應(yīng)用,同時考查了圓錐曲線的定義及性質(zhì)的應(yīng)用,同時考查了圓錐曲線與直線的位置關(guān)系的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2sin($\frac{x}{4}$-$\frac{π}{4}$) | B. | 2sin($\frac{x}{4}$+$\frac{π}{4}$) | C. | 2sin($\frac{πx}{4}$-$\frac{π}{4}$) | D. | 2sin($\frac{πx}{4}$+$\frac{π}{4}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 9 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com