分析 (1)利用二倍角和誘導(dǎo)公式,輔助公式將函數(shù)化為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期,
(2)將內(nèi)層函數(shù)看作整體,求出范圍,根據(jù)正弦函數(shù)的單調(diào)區(qū)間,可得函數(shù)f(x)的單調(diào)區(qū)間;
解答 解:(1)函數(shù)f(x)=[cos($\frac{π}{2}$-x)-$\sqrt{3}$cosx]cosx.
化簡(jiǎn)可得:f(x)=sinxcosx-$\sqrt{3}$cos2x=$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$$-\frac{\sqrt{3}}{2}cos2x$=sin(2x-$\frac{π}{3}$)$-\frac{\sqrt{3}}{2}$.
∴f(x)的最小正周期T=$\frac{2π}{2}=π$,
∵sin(2x-$\frac{π}{3}$)的最大值為1.
∴f(x)的最大值為1-$\frac{\sqrt{3}}{2}$.
(2)∵x∈[$\frac{π}{4}$,$\frac{3π}{4}$]上,
∴$\frac{π}{6}$≤2x-$\frac{π}{3}$≤$\frac{7π}{6}$
∴當(dāng)$\frac{π}{6}$≤2x-$\frac{π}{3}$≤$\frac{π}{2}$時(shí),即$\frac{π}{4}≤x≤\frac{5π}{12}$時(shí),f(x)時(shí)單調(diào)遞增.
∴當(dāng)$\frac{π}{2}$≤2x-$\frac{π}{3}$≤$\frac{7π}{6}$時(shí),即$\frac{5π}{12}≤x≤\frac{3π}{4}$時(shí),f(x)時(shí)單調(diào)遞減.
點(diǎn)評(píng) 本題主要考查對(duì)三角函數(shù)的化簡(jiǎn)能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x-2y-4=0 | B. | x-2y+6=0 | C. | x-2y-6=0 | D. | x-2y+4=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|0≤x<3} | B. | {x|1<x≤2} | C. | {x|1<x<3} | D. | {x|x≤2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x+y-1=0 | B. | 2x+y-5=0 | C. | x+2y-5=0 | D. | x-2y+7=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com