14.已知數(shù)列{an}是等差數(shù)列,a5+a6=8,則數(shù)列{an}的前10項(xiàng)和為(  )
A.40B.35C.20D.15

分析 根據(jù)等差數(shù)列的性質(zhì)可知a1+a10=a5+a6=8,代入求和公式即可得出答案.

解答 解:∵{an}是等差數(shù)列,∴a1+a10=a5+a6=8,
∴${S_{10}}=\frac{{10×({a_1}+{a_{10}})}}{2}=40$,
故選:A.

點(diǎn)評(píng) 本題考查了等差數(shù)列的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)$f(x)=Asin({ωx+φ})({A>0,ω>0,0<φ<\frac{π}{2}})$的部分圖象如圖所示,將f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位得到函數(shù)g(x)的圖象.
(I)求函數(shù)g(x)的解析式及單調(diào)遞增區(qū)間;
(II)在△x ABC中,角A,B,C的對(duì)邊分別為a,b,c,若(2a-c)cosB-bcosC=0且$f({\frac{A}{2}})=\frac{2}{3}$,求cos(A-B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=2cos(ωx+φ)(ω>0)是奇函數(shù),其圖象與直線(xiàn)y=-2的交點(diǎn)間的最小距離是π,則( 。
A.ω=2,φ=$\frac{π}{2}$B.ω=2,φ=πC.ω=$\frac{1}{2}$,φ=$\frac{π}{2}$D.ω=$\frac{1}{2}$,φ=$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖,A,B,C,D為平面四邊形ABCD的四個(gè)內(nèi)角,若A+C=180°,AB=6,BC=4,CD=5,AD=5,則四邊形ABCD面積是10$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知△ABC的三個(gè)內(nèi)角A,B,C的對(duì)應(yīng)邊分別為a,b,c,且${S_{△ABC}}=\frac{{\sqrt{3}}}{12}{a^2}$.則使得sin2B+sin2C=msinBsinC成立的實(shí)數(shù)m的最大值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知點(diǎn)F為雙曲線(xiàn)C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點(diǎn),F(xiàn)關(guān)于直線(xiàn)y=$\frac{1}{3}$x的對(duì)稱(chēng)點(diǎn)在C上,則C的漸近線(xiàn)方程為y=±$\frac{\sqrt{6}}{2}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知正方形ABCD的邊長(zhǎng)為6,M在邊BC上且BC=3BM,N為DC的中點(diǎn),則$\overrightarrow{AM}•\overrightarrow{BN}$=( 。
A.-6B.12C.6D.-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知四棱錐P-ABCD的底面ABCD是平行四邊形,△PAB與△ABC是等腰三角形,PA⊥平面ABCD,PA=2,AD=2$\sqrt{2}$,AC⊥BA,點(diǎn)E是線(xiàn)段AB上靠近點(diǎn)B的一個(gè)三等分點(diǎn),點(diǎn)F、G分別在線(xiàn)段PD,PC上.
(Ⅰ)證明:CD⊥AG;
(Ⅱ)若三棱錐E-BCF的體積為$\frac{1}{6}$,求$\frac{FD}{PD}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,已知AB⊥平面ACD,DE∥AB,△ACD是等腰三角形,∠CAD=120°,AD=DE=2AB.
(I)求證:平面BCE⊥平面CDE;
(II)求平面BCE與平面ADEB所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案